-
Arnaud WATLET authored0ea26400
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import datetime
import adafruit_ads1x15.ads1115 as ads # noqa
from adafruit_ads1x15.analog_in import AnalogIn # noqa
from adafruit_ads1x15.ads1x15 import Mode # noqa
from adafruit_mcp230xx.mcp23008 import MCP23008 # noqa
from digitalio import Direction # noqa
from busio import I2C # noqa
import os
import time
from ohmpi.utils import enforce_specs
from ohmpi.hardware_components.mb_2023_0_X import Tx as Tx_mb_2023
from ohmpi.hardware_components.mb_2023_0_X import Rx as Rx_mb_2023
# hardware characteristics and limitations
# voltages are given in mV, currents in mA, sampling rates in Hz and data_rate in S/s
SPECS = {'rx': {'model': {'default': os.path.basename(__file__).rstrip('.py')},
'sampling_rate': {'min': 2., 'default': 10., 'max': 100.},
'data_rate': {'default': 860.},
'bias': {'min': -5000., 'default': 0., 'max': 5000.},
'coef_p2': {'default': 1.00},
'mcp_address': {'default': 0x27},
'ads_address': {'default': 0x49},
'voltage_min': {'default': 10.0},
'voltage_max': {'default': 5000.0}, # [mV]
'dg411_gain_ratio': {'default': 1/2}, # lowest resistor value over sum of resistor values
'vmn_hardware_offset': {'default': 2500.},
},
'tx': {'model': {'default': os.path.basename(__file__).rstrip('.py')},
'adc_voltage_min': {'default': 10.}, # Minimum voltage value used in vmin strategy
'adc_voltage_max': {'default': 4500.}, # Maximum voltage on ads1115 used to measure current
'voltage_max': {'min': 0., 'default': 12., 'max': 50.}, # Maximum input voltage
'data_rate': {'default': 860.},
'mcp_address': {'default': 0x21},
'ads_address': {'default': 0x48},
'compatible_power_sources': {'default': ['pwr_batt', 'dps5005']},
'r_shunt': {'min': 0.001, 'default': 2.},
'activation_delay': {'default': 0.010}, # Max turn on time of OMRON G5LE-1 5VDC relays
'release_delay': {'default': 0.005}, # Max turn off time of OMRON G5LE-1 5VDC relays = 1ms
'pwr_latency': {'default': 4.}
}}
# TODO: move low_battery spec in pwr
def _ads_1115_gain_auto(channel): # Make it a class method ?
"""Automatically sets the gain on a channel
Parameters
----------
channel : ads.ADS1x15
Instance of ADS where voltage is measured.
Returns
-------
gain : float
Gain to be applied on ADS1115.
"""
gain = 2 / 3
if (abs(channel.voltage) < 2.048) and (abs(channel.voltage) >= 1.024):
gain = 2
elif (abs(channel.voltage) < 1.024) and (abs(channel.voltage) >= 0.512):
gain = 4
elif (abs(channel.voltage) < 0.512) and (abs(channel.voltage) >= 0.256):
gain = 8
elif abs(channel.voltage) < 0.256:
gain = 16
return gain
class Tx(Tx_mb_2023):
def __init__(self, **kwargs):
if 'model' not in kwargs.keys():
for key in SPECS['tx'].keys():
kwargs = enforce_specs(kwargs, SPECS['tx'], key)
subclass_init = False
else:
subclass_init = True
super().__init__(**kwargs)
if not subclass_init:
self.exec_logger.event(f'{self.model}\ttx_init\tbegin\t{datetime.datetime.utcnow()}')
self._pwr_latency = kwargs['pwr_latency']
# Initialize LEDs
self.pin4 = self.mcp_board.get_pin(4) # Ohmpi_run
self.pin4.direction = Direction.OUTPUT
self.pin4.value = True
self.pin6 = self.mcp_board.get_pin(6)
self.pin6.direction = Direction.OUTPUT
self.pin6.value = False
self.pin2 = self.mcp_board.get_pin(2) # dps -
self.pin2.direction = Direction.OUTPUT
self.pin2.value = False
self.pin3 = self.mcp_board.get_pin(3) # dps -
self.pin3.direction = Direction.OUTPUT
self.pin3.value = False
if not subclass_init:
self.exec_logger.event(f'{self.model}\ttx_init\tend\t{datetime.datetime.utcnow()}')
def inject(self, polarity=1, injection_duration=None):
# add leds?
self.pin6.value = True
Tx_mb_2023.inject(self, polarity=polarity, injection_duration=injection_duration)
self.pin6.value = False
@property
def pwr_state(self):
return self._pwr_state
@pwr_state.setter
def pwr_state(self, state):
"""Switches pwr on or off.
Parameters
----------
state : str
'on', 'off'
"""
if state == 'on':
self.pin2.value = True
self.pin3.value = True
self.exec_logger.debug(f'Switching DPS on')
self._pwr_state = 'on'
time.sleep(self._pwr_latency) # from pwr specs
elif state == 'off':
self.pin2.value = False
self.pin3.value = False
self.exec_logger.debug(f'Switching DPS off')
self._pwr_state = 'off'
@property
def polarity(self):
return self._polarity
@Tx_mb_2023.polarity.setter
def polarity(self, polarity):
assert polarity in [-1, 0, 1]
self._polarity = polarity
if polarity == 1:
if self.pwr.voltage_adjustable:
self.pwr_state = 'on'
self.pin0.value = True
self.pin1.value = False
time.sleep(self._activation_delay)
elif polarity == -1:
if self.pwr.voltage_adjustable:
self.pwr_state = 'on'
self.pin0.value = False
self.pin1.value = True
time.sleep(self._activation_delay)
else:
if self.pwr.voltage_adjustable:
self.pwr_state = 'off'
self.pin0.value = False
self.pin1.value = False
time.sleep(self._release_delay)
class Rx(Rx_mb_2023):
def __init__(self, **kwargs):
if 'model' not in kwargs.keys():
for key in SPECS['rx'].keys():
kwargs = enforce_specs(kwargs, SPECS['rx'], key)
subclass_init = False
else:
subclass_init = True
super().__init__(**kwargs)
if not subclass_init:
self.exec_logger.event(f'{self.model}\trx_init\tbegin\t{datetime.datetime.utcnow()}')
# I2C connection to MCP23008, for voltage
self.mcp_board = MCP23008(self.connection, address=kwargs['mcp_address'])
# ADS1115 for voltage measurement (MN)
self._coef_p2 = 1.
# Define default DG411 gain
self._dg411_gain_ratio = kwargs['dg411_gain_ratio']
self._dg411_gain = self._dg411_gain_ratio
# Define pins for DG411
self.pin_DG0 = self.mcp_board.get_pin(0)
self.pin_DG0.direction = Direction.OUTPUT
self.pin_DG1 = self.mcp_board.get_pin(1)
self.pin_DG1.direction = Direction.OUTPUT
self.pin_DG2 = self.mcp_board.get_pin(2)
self.pin_DG2.direction = Direction.OUTPUT
self.pin_DG0.value = True # open
self.pin_DG1.value = True # open gain 1 inactive
self.pin_DG2.value = False # close gain 0.5 active
self.gain = self._adc_gain * self._dg411_gain_ratio # 1/3 by default since self._adc_gain is equal to 2/3 and self._dg411_gain_ratio to 1/2 by default
if not subclass_init: # TODO: try to only log this event and not the one created by super()
self.exec_logger.event(f'{self.model}\trx_init\tend\t{datetime.datetime.utcnow()}')
def _adc_gain_auto(self):
self.exec_logger.event(f'{self.model}\trx_adc_auto_gain\tbegin\t{datetime.datetime.utcnow()}')
gain = _ads_1115_gain_auto(AnalogIn(self._ads_voltage, ads.P0))
self.exec_logger.debug(f'Setting RX ADC gain automatically to {gain}')
self._adc_gain = gain
self.exec_logger.event(f'{self.model}\trx_adc_auto_gain\tend\t{datetime.datetime.utcnow()}')
def _dg411_gain_auto(self):
if self.voltage < self._vmn_hardware_offset :
self._dg411_gain = 1.
else:
self._dg411_gain = self._dg411_gain_ratio
self.exec_logger.debug(f'Setting RX DG411 gain automatically to {self._dg411_gain}')
@property
def gain(self):
return self._adc_gain*self._dg411_gain
@gain.setter
def gain(self, value):
assert value in [1/3, 2/3, self._adc_gain * self._dg411_gain_ratio] #TODO: 1/3 could be removed since self._adc_gain * self._dg411_gain_ratio is 1/3 by default
self._dg411_gain = value / self._adc_gain # _adc_gain is kept to 2/3 in this board version so _dg411_gain is 1 or 1/2 by default
if self._dg411_gain == 1.:
self.pin_DG1.value = False # closed gain 1 active
self.pin_DG2.value = True # open gain 0.5 inactive
elif self._dg411_gain == self._dg411_gain_ratio:
self.pin_DG1.value = True # closed gain 1 active
self.pin_DG2.value = False # open gain 0.5 inactive
def gain_auto(self):
self._dg411_gain_auto()
self.exec_logger.debug(f'Setting RX gain automatically to {self.gain}')
def reset_gain(self):
self.gain = self._adc_gain * self._dg411_gain_ratio # 1/3 by default since self._adc_gain is equal to 2/3 and self._dg411_gain_ratio to 1/2 by default
@property
def voltage(self):
""" Gets the voltage VMN in Volts
"""
self.exec_logger.event(f'{self.model}\trx_voltage\tbegin\t{datetime.datetime.utcnow()}')
u = (AnalogIn(self._ads_voltage, ads.P0).voltage * self._coef_p2 * 1000. - self._vmn_hardware_offset) / self._dg411_gain - self._bias # TODO: check how to handle bias and _vmn_hardware_offset
self.exec_logger.event(f'{self.model}\trx_voltage\tend\t{datetime.datetime.utcnow()}')
return u