-
Olivier Kaufmann authored0ffc5e66
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
import importlib
import datetime
import time
import numpy as np
try:
import matplotlib.pyplot as plt
except Exception: # noqa
pass
from ohmpi.hardware_components.abstract_hardware_components import CtlAbstract
from ohmpi.logging_setup import create_stdout_logger
from ohmpi.utils import update_dict
from ohmpi.config import HARDWARE_CONFIG as HC
from threading import Thread, Event, Barrier, BrokenBarrierError
import warnings
# plt.switch_backend('agg') # for thread safe operations...
def elapsed_seconds(start_time):
lap = datetime.datetime.utcnow() - start_time
return lap.total_seconds()
class OhmPiHardware:
"""OhmPiHardware class.
"""
def __init__(self, **kwargs):
# OhmPiHardware initialization
self.exec_logger = kwargs.pop('exec_logger', create_stdout_logger('exec_hw'))
self.exec_logger.event(f'OhmPiHardware\tinit\tbegin\t{datetime.datetime.utcnow()}')
self.data_logger = kwargs.pop('exec_logger', create_stdout_logger('data_hw'))
self.soh_logger = kwargs.pop('soh_logger', create_stdout_logger('soh_hw'))
self.tx_sync = Event()
self.hardware_config = kwargs.pop('hardware_config', HC)
HARDWARE_CONFIG = self.hardware_config
print('hardware_config', HARDWARE_CONFIG)
# Define the default controller, a distinct controller could be defined for each tx, rx or mux board
# when using a distinct controller, the specific controller definition must be included in the component
# configuration
ctl_module = importlib.import_module(f'ohmpi.hardware_components.{HARDWARE_CONFIG["ctl"]["model"]}')
pwr_module = importlib.import_module(f'ohmpi.hardware_components.{HARDWARE_CONFIG["pwr"]["model"]}')
tx_module = importlib.import_module(f'ohmpi.hardware_components.{HARDWARE_CONFIG["tx"]["model"]}')
rx_module = importlib.import_module(f'ohmpi.hardware_components.{HARDWARE_CONFIG["rx"]["model"]}')
MUX_DEFAULT = HARDWARE_CONFIG['mux']['default']
MUX_CONFIG = HARDWARE_CONFIG['mux']['boards']
for k, v in MUX_CONFIG.items():
MUX_CONFIG[k].update({'id': k})
for k2, v2 in MUX_DEFAULT.items():
MUX_CONFIG[k].update({k2: MUX_CONFIG[k].pop(k2, v2)})
TX_CONFIG = HARDWARE_CONFIG['tx']
for k, v in tx_module.SPECS['tx'].items():
try:
TX_CONFIG.update({k: TX_CONFIG.pop(k, v['default'])})
except Exception as e:
print(f'Cannot set value {v} in TX_CONFIG[{k}]:\n{e}')
RX_CONFIG = HARDWARE_CONFIG['rx']
for k, v in rx_module.SPECS['rx'].items():
try:
RX_CONFIG.update({k: RX_CONFIG.pop(k, v['default'])})
except Exception as e:
print(f'Cannot set value {v} in RX_CONFIG[{k}]:\n{e}')
self.current_max = np.min([TX_CONFIG['current_max'], HARDWARE_CONFIG['pwr'].pop('current_max', np.inf),
np.min(np.hstack(
(np.inf,
[MUX_CONFIG[i].pop('current_max', np.inf) for i in MUX_CONFIG.keys()])))])
self.voltage_max = np.min([TX_CONFIG['voltage_max'],
np.min(np.hstack(
(np.inf,
[MUX_CONFIG[i].pop('voltage_max', np.inf) for i in MUX_CONFIG.keys()])))])
print('maximums', self.voltage_max, self.current_max)
self.voltage_min = RX_CONFIG['voltage_min']
# TODO: should replace voltage_max and voltage_min by vab_max and vmn_min...
self.sampling_rate = RX_CONFIG['sampling_rate']
# Main Controller initialization
HARDWARE_CONFIG['ctl'].pop('model')
HARDWARE_CONFIG['ctl'].update({'exec_logger': self.exec_logger, 'data_logger': self.data_logger,
'soh_logger': self.soh_logger})
self.ctl = kwargs.pop('ctl', ctl_module.Ctl(**HARDWARE_CONFIG['ctl']))
# use controller as defined in kwargs if present otherwise use controller as defined in config.
if isinstance(self.ctl, dict):
ctl_mod = self.ctl.pop('model', self.ctl)
if isinstance(ctl_mod, str):
ctl_mod = importlib.import_module(f'ohmpi.hardware_components.{ctl_mod}')
self.ctl = ctl_mod.Ctl(**self.ctl)
# Initialize RX
HARDWARE_CONFIG['rx'].pop('model')
HARDWARE_CONFIG['rx'].update(**HARDWARE_CONFIG['rx']) # TODO: delete me ?
HARDWARE_CONFIG['rx'].update({'ctl': HARDWARE_CONFIG['rx'].pop('ctl', self.ctl)})
if isinstance(HARDWARE_CONFIG['rx']['ctl'], dict):
ctl_mod = HARDWARE_CONFIG['rx']['ctl'].pop('model', self.ctl)
if isinstance(ctl_mod, str):
ctl_mod = importlib.import_module(f'ohmpi.hardware_components.{ctl_mod}')
HARDWARE_CONFIG['rx']['ctl'] = ctl_mod.Ctl(**HARDWARE_CONFIG['rx']['ctl'])
HARDWARE_CONFIG['rx'].update({'connection':
HARDWARE_CONFIG['rx'].pop('connection',
HARDWARE_CONFIG['rx']['ctl'].interfaces[
HARDWARE_CONFIG['rx'].pop(
'interface_name', 'i2c')])})
HARDWARE_CONFIG['rx'].update({'exec_logger': self.exec_logger, 'data_logger': self.data_logger,
'soh_logger': self.soh_logger})
HARDWARE_CONFIG['tx'].pop('ctl', None)
self.rx = kwargs.pop('rx', rx_module.Rx(**HARDWARE_CONFIG['rx']))
# Initialize TX
HARDWARE_CONFIG['tx'].pop('model')
HARDWARE_CONFIG['tx'].update(**HARDWARE_CONFIG['tx'])
HARDWARE_CONFIG['tx'].update({'tx_sync': self.tx_sync})
HARDWARE_CONFIG['tx'].update({'ctl': HARDWARE_CONFIG['tx'].pop('ctl', self.ctl)})
if isinstance(HARDWARE_CONFIG['tx']['ctl'], dict):
ctl_mod = HARDWARE_CONFIG['tx']['ctl'].pop('model', self.ctl)
if isinstance(ctl_mod, str):
ctl_mod = importlib.import_module(f'ohmpi.hardware_components.{ctl_mod}')
HARDWARE_CONFIG['tx']['ctl'] = ctl_mod.Ctl(**HARDWARE_CONFIG['tx']['ctl'])
HARDWARE_CONFIG['tx'].update({'connection': HARDWARE_CONFIG['tx'].pop('connection',
HARDWARE_CONFIG['tx']['ctl'].interfaces[
HARDWARE_CONFIG['tx'].pop(
'interface_name', 'i2c')])})
HARDWARE_CONFIG['tx'].pop('ctl', None)
HARDWARE_CONFIG['tx'].update({'exec_logger': self.exec_logger, 'data_logger': self.data_logger,
'soh_logger': self.soh_logger})
self.tx = kwargs.pop('tx', tx_module.Tx(**HARDWARE_CONFIG['tx']))
if isinstance(self.tx, dict):
self.tx = tx_module.Tx(**self.tx)
# Initialize power source
HARDWARE_CONFIG['pwr'].pop('model')
HARDWARE_CONFIG['pwr'].update(**HARDWARE_CONFIG['pwr']) # NOTE: Explain why this is needed or delete me
HARDWARE_CONFIG['pwr'].update({'ctl': HARDWARE_CONFIG['pwr'].pop('ctl', self.ctl)})
HARDWARE_CONFIG['pwr'].update({'current_max': self.current_max})
if isinstance(HARDWARE_CONFIG['pwr']['ctl'], dict):
ctl_mod = HARDWARE_CONFIG['pwr']['ctl'].pop('model', self.ctl)
if isinstance(ctl_mod, str):
ctl_mod = importlib.import_module(f'ohmpi.hardware_components.{ctl_mod}')
HARDWARE_CONFIG['pwr']['ctl'] = ctl_mod.Ctl(**HARDWARE_CONFIG['pwr']['ctl'])
HARDWARE_CONFIG['pwr'].update({
'interface_name': HARDWARE_CONFIG['pwr'].pop('interface_name', None)})
HARDWARE_CONFIG['pwr'].update({
'connection': HARDWARE_CONFIG['pwr'].pop(
'connection', HARDWARE_CONFIG['pwr']['ctl'].interfaces[
HARDWARE_CONFIG['pwr']['interface_name']])})
HARDWARE_CONFIG['pwr'].update({'exec_logger': self.exec_logger, 'data_logger': self.data_logger,
'soh_logger': self.soh_logger})
# if self.tx.specs['connect']:
# self.pwr_state = "on"
self.pwr = kwargs.pop('pwr', pwr_module.Pwr(**HARDWARE_CONFIG['pwr']))
# if self.tx.specs['connect']:
# self.pwr_state = 'off'
# Join tX and pwr
self.tx.pwr = self.pwr
if not self.tx.pwr.voltage_adjustable:
self.tx.pwr._pwr_latency = 0
if self.tx.specs['connect']:
self.tx.polarity = 0
self.tx.pwr._current_max = self.current_max
# Initialize Muxes
self._cabling = kwargs.pop('cabling', {})
self.mux_boards = {}
for mux_id, mux_config in MUX_CONFIG.items():
mux_config.update({'exec_logger': self.exec_logger, 'data_logger': self.data_logger,
'soh_logger': self.soh_logger})
mux_config.update(**MUX_CONFIG[mux_id])
mux_config.update({'ctl': mux_config.pop('ctl', self.ctl)})
mux_module = importlib.import_module(f'ohmpi.hardware_components.{mux_config["model"]}')
if isinstance(mux_config['ctl'], dict):
mux_ctl_module = importlib.import_module(f'ohmpi.hardware_components.{mux_config["ctl"]["model"]}')
mux_config['ctl'] = mux_ctl_module.Ctl(**mux_config['ctl']) # (**self.ctl)
assert issubclass(type(mux_config['ctl']), CtlAbstract)
mux_config.update({'connection': mux_config.pop('connection', mux_config['ctl'].interfaces[
mux_config.pop('interface_name', 'i2c')])})
mux_config['id'] = mux_id
self.mux_boards[mux_id] = mux_module.Mux(**mux_config)
self.mux_barrier = Barrier(len(self.mux_boards) + 1)
self._cabling = {}
for mux_id, mux in self.mux_boards.items():
mux.barrier = self.mux_barrier
for k, v in mux.cabling.items():
update_dict(self._cabling, {k: (mux_id, k[0])}) # TODO: in theory k[0] is not needed in values
# Complete OhmPiHardware initialization
self.readings = np.array([]) # time series of acquired data
self.sp = None # init SP
self._start_time = None # time of the beginning of a readings acquisition
self._pulse = 0 # pulse number
self.exec_logger.event(f'OhmPiHardware\tinit\tend\t{datetime.datetime.utcnow()}')
self._pwr_state = 'off'
@property
def pwr_state(self):
return self._pwr_state
@pwr_state.setter
def pwr_state(self, state):
if state == 'on':
self.tx.pwr_state = 'on'
self._pwr_state = 'on'
elif state == 'off':
self.tx.pwr_state = 'off'
self._pwr_state = 'off'
def _clear_values(self):
self.readings = np.array([])
self._start_time = None
self._pulse = 0
def _gain_auto(self, polarities=(1, -1), vab=5., switch_pwr_off=False): # TODO: improve _gain_auto
self.exec_logger.event(f'OhmPiHardware\ttx_rx_gain_auto\tbegin\t{datetime.datetime.utcnow()}')
current, voltage = 0., 0.
if self.tx.pwr.voltage_adjustable:
self.tx.voltage = vab
if self.tx.pwr.pwr_state == 'off':
self.tx.pwr.pwr_state = 'on'
switch_pwr_off = True
tx_gains = []
rx_gains = []
for pol in polarities:
# self.tx.polarity = pol
# set gains automatically
injection = Thread(target=self._inject, kwargs={'injection_duration': 0.2, 'polarity': pol})
# readings = Thread(target=self._read_values)
get_tx_gain = Thread(target=self.tx.gain_auto)
get_rx_gain = Thread(target=self.rx.gain_auto)
injection.start()
self.tx_sync.wait()
get_tx_gain.start() # TODO: add a barrier to synchronize?
get_rx_gain.start()
get_tx_gain.join()
get_rx_gain.join()
injection.join()
tx_gains.append(self.tx.gain)
rx_gains.append(self.rx.gain)
# v = self.readings[:, 2] != 0
# current = max(current, np.mean(self.readings[v, 3]))
# voltage = max(voltage, np.abs(np.mean(self.readings[v, 2] * self.readings[v, 4])))
self.tx.polarity = 0
self.tx.gain = min(tx_gains)
self.rx.gain = min(rx_gains)
# self.rx.gain_auto(voltage)
if switch_pwr_off:
self.tx.pwr.pwr_state = 'off'
self.exec_logger.event(f'OhmPiHardware\ttx_rx_gain_auto\tend\t{datetime.datetime.utcnow()}')
def _inject(self, polarity=1, injection_duration=None): # TODO: deal with voltage or current pulse
self.exec_logger.event(f'OhmPiHardware\tinject\tbegin\t{datetime.datetime.utcnow()}')
self.tx.voltage_pulse(length=injection_duration, polarity=polarity)
self.exec_logger.event(f'OhmPiHardware\tinject\tend\t{datetime.datetime.utcnow()}')
def _set_mux_barrier(self):
self.mux_barrier = Barrier(len(self.mux_boards) + 1)
for mux in self.mux_boards:
mux.barrier = self.mux_barrier
@property
def pulses(self): # TODO: is this obsolete? I don't think so...
pulses = {}
for i in np.unique(self.readings[:, 1]):
r = self.readings[self.readings[:, 1] == i, :]
assert np.all(np.isclose(r[:, 2], r[0, 2])) # Polarity cannot change within a pulse
# TODO: check how to generalize in case of multi-channel RX
pulses.update({i: {'polarity': int(r[0, 2]), 'iab': r[:, 3], 'vmn': r[:, 4]}})
return pulses
def _read_values(self, sampling_rate=None, append=False, test_r_shunt=False): # noqa
"""
Reads vmn and iab values on ADS1115 and generates full waveform dataset consisting of
[time, pulse nr, polarity, vmn, iab]
Parameters
----------
sampling_rate: float,None , optional
append: bool Default: False
"""
self.exec_logger.event(f'OhmPiHardware\tread_values\tbegin\t{datetime.datetime.utcnow()}')
if not append:
self._clear_values()
_readings = []
else:
_readings = self.readings.tolist()
# if test_r_shunt:
_current = []
if sampling_rate is None:
sampling_rate = self.rx.sampling_rate
sample = 0
lap = datetime.datetime.utcnow() # just in case tx_sync is not set immediately after passing wait
self.tx_sync.wait() #
if not append or self._start_time is None:
self._start_time = datetime.datetime.utcnow()
# TODO: Check if replacing the following two options by a reset_buffer method of TX would be OK
time.sleep(np.max([self.rx.latency, self.tx.latency])) # if continuous mode
# _ = self.rx.voltage # if not continuous mode
while self.tx_sync.is_set():
lap = datetime.datetime.utcnow()
r = [elapsed_seconds(self._start_time), self._pulse, self.tx.polarity, self.tx.current, self.rx.voltage]
if self.tx_sync.is_set():
sample += 1
_readings.append(r)
if test_r_shunt:
self.tx.pwr._retrieve_current()
_current.append(self.tx.pwr.current)
sleep_time = self._start_time + datetime.timedelta(seconds=sample / sampling_rate) - lap
if sleep_time.total_seconds() < 0.:
# TODO: count how many samples were skipped to make a stat that could be used to qualify pulses
sample += int(sampling_rate * np.abs(sleep_time.total_seconds())) + 1
sleep_time = self._start_time + datetime.timedelta(seconds=sample / sampling_rate) - lap
time.sleep(np.max([0., sleep_time.total_seconds()]))
self.exec_logger.debug(f'pulse {self._pulse}: elapsed time {(lap - self._start_time).total_seconds()} s')
self.exec_logger.debug(f'pulse {self._pulse}: total samples {len(_readings)}')
self.readings = np.array(_readings)
if test_r_shunt:
self._current = np.array(_current)
self._pulse += 1
self.exec_logger.event(f'OhmPiHardware\tread_values\tend\t{datetime.datetime.utcnow()}')
def select_samples(self, delay=0.):
x = []
for pulse in np.unique(self.readings[:, 1]):
v = np.where((self.readings[:, 1] == pulse))[0]
if len(v) > 0: # to avoid pulse not recorded due to Raspberry Pi lag...
t_start_pulse = min(self.readings[v, 0])
x.append(np.where((self.readings[:, 0] >= t_start_pulse + delay) & (self.readings[:, 2] != 0) & (
self.readings[:, 1] == pulse))[0])
x = np.concatenate(np.array(x, dtype='object'))
x = x.astype('int32')
return x
def last_resistance(self, delay=0.):
v = self.select_samples(delay)
if self.sp is None:
self.last_sp(delay=delay)
if len(v) > 1:
# return np.mean(np.abs(self.readings[v, 4] - self.sp) / self.readings[v, 3])
return np.mean(self.readings[v, 2] * (self.readings[v, 4] - self.sp) / self.readings[v, 3])
else:
return np.nan
def last_dev(self, delay=0.):
v = self.select_samples(delay)
if self.sp is None:
self.last_sp(delay=delay)
if len(v) > 1:
return 100. * np.std(
self.readings[v, 2] * (self.readings[v, 4] - self.sp) / self.readings[v, 3]) / self.last_resistance(
delay=delay)
else:
return np.nan
def last_vmn(self, delay=0.):
v = self.select_samples(delay)
if self.sp is None:
self.last_sp(delay=delay)
if len(v) > 1:
return np.mean(self.readings[v, 2] * (self.readings[v, 4] - self.sp))
else:
return np.nan
def last_vmn_dev(self, delay=0.): # TODO: should compute std per stack because this does not account for SP...
v = self.select_samples(delay)
if self.sp is None:
self.last_sp(delay=delay)
if len(v) > 1:
return 100. * np.std(self.readings[v, 2] * (self.readings[v, 4] - self.sp)) / self.last_vmn(delay=delay)
else:
return np.nan
def last_iab(self, delay=0.):
v = self.select_samples(delay)
if len(v) > 1:
return np.mean(self.readings[v, 3])
else:
return np.nan
def last_iab_dev(self, delay=0.):
v = self.select_samples(delay)
if len(v) > 1:
return 100. * np.std(self.readings[v, 3]) / self.last_iab(delay=delay)
else:
return np.nan
def last_sp(self,
delay=0.): # TODO: allow for different strategies for computing sp (i.e. when sp drift is not linear)
v = self.select_samples(delay)
if self.readings.shape == (0,) or len(self.readings[self.readings[:, 2] == 1, :]) < 1 or \
len(self.readings[self.readings[:, 2] == -1, :]) < 1:
self.exec_logger.warning('Unable to compute sp: readings should at least contain one positive and one '
'negative pulse')
return 0.
else:
n_pulses = np.unique(self.readings[v, 1])
polarity = np.array([np.median(self.readings[v][self.readings[v, 1] == i, 2]) for i in n_pulses])
mean_vmn = []
for pulse in n_pulses:
mean_vmn.append(np.mean(self.readings[v][self.readings[v, 1] == pulse, 4]))
mean_vmn = np.array(mean_vmn)
self.sp = np.mean(mean_vmn[np.ix_(polarity == 1)] + mean_vmn[np.ix_(polarity == -1)]) / 2
# return sp
def _find_vab(self, vab, iab, vmn, p_max, vab_max, iab_max, vmn_max, vmn_min):
""" Finds the best injection voltage
Parameters
----------
vab: float
vab in use
iab: np.ndarray, list
series of current measured during the pulses
vmn: np.ndarray, list
p_max: float
vab_max: float
iab_max: float
vmn_max: float
vmn_min: float
Returns
-------
float
improved value for vab
"""
self.exec_logger.debug('Searching for the best Vab...')
iab_mean = np.mean(iab)
iab_std = np.std(iab)
vmn_mean = np.mean(vmn)
vmn_std = np.std(vmn)
# print(f'iab: ({iab_mean:.5f}, {iab_std:5f}), vmn: ({vmn_mean:.4f}, {vmn_std:.4f})')
# bounds on iab
iab_upper_bound = iab_mean + 2 * iab_std # why no absolute upper bound?
iab_lower_bound = np.max([0.00001, iab_mean - 2 * iab_std])
# bounds on vmn
vmn_upper_bound = vmn_mean + 2 * vmn_std
vmn_lower_bound = np.max([0.000001, vmn_mean - 2 * vmn_std])
# bounds on rab
rab_lower_bound = np.max([0.1, np.abs(vab / iab_upper_bound)])
rab_upper_bound = np.max([0.1, np.abs(vab / iab_lower_bound)])
# bounds on r
r_lower_bound = np.max([0.1, np.abs(vmn_lower_bound / iab_upper_bound)])
r_upper_bound = np.max([0.1, np.abs(vmn_upper_bound / iab_lower_bound)])
# conditions for vab update
cond_vmn_max = rab_lower_bound / r_upper_bound * vmn_max
cond_vmn_min = rab_upper_bound / r_lower_bound * vmn_min
cond_p_max = np.sqrt(p_max * rab_lower_bound)
cond_iab_max = rab_lower_bound * iab_max
# print(f'Rab: [{rab_lower_bound:.1f}, {rab_upper_bound:.1f}], R: [{r_lower_bound:.1f},{r_upper_bound:.1f}]')
self.exec_logger.debug(
f'[vab_max: {vab_max:.1f}, vmn_max: {cond_vmn_max:.1f}, vmn_min: {cond_vmn_min:.1f}, '
f'p_max: {cond_p_max:.1f}, iab_max: {cond_iab_max:.1f}]')
new_vab = np.min([vab_max, cond_vmn_max, cond_p_max, cond_iab_max])
if new_vab == vab_max:
self.exec_logger.debug(f'Vab {new_vab} bounded by Vab max')
elif new_vab == cond_p_max:
self.exec_logger.debug(f'Vab {vab} bounded by P max')
elif new_vab == cond_iab_max:
self.exec_logger.debug(f'Vab {vab} bounded by Iab max')
elif new_vab == cond_vmn_max:
self.exec_logger.debug(f'Vab {vab} bounded by Vmn max')
else:
self.exec_logger.debug(f'Vab {vab} bounded by Vmn min')
return new_vab
def compute_vab(self, pulse_duration=0.1, strategy='vmax', vab=5., vab_max=None,
iab_max=None, vmn_max=None, vmn_min=None, polarities=(1, -1), delay=0.05,
p_max=None, diff_vab_lim=2.5, n_steps=4):
""" Estimates best Vab voltage based on different strategies.
In "vmax" and "vmin" strategies, we iteratively increase/decrease the vab while
checking vmn < vmn_max, vmn > vmn_min and iab < iab_max. We do a maximum of n_steps
and when the difference between the two steps is below diff_vab_lim or we
reached the maximum number of steps, we return the vab found.
Parameters
----------
pulse_duration : float, optional
Time in seconds for the pulse used to compute optimal Vab.
strategy : str, optional
Either:
- vmax : compute Vab to reach a maximum Iab without exceeding vab_max or p_max
- vmin : compute Vab to reach at least vmn_min
- constant : apply given Vab, if vab > vab_max then strategy is changed to vmax
- full_constant : apply given Vab, no checking with vmax (at your own risk!)
vab : float, optional
Voltage to apply for guessing the best voltage. 5 V applied
by default. If strategy "constant" is chosen, constant voltage
to applied is "vab".
vab_max : float, optional
Maximum injection voltage to apply to tx (used by all strategies).
vmn_max : float, optional
Maximum voltage target for rx (used by vmax strategy).
vmn_min : float, optional
Minimum voltage target for rx (used by vmin strategy).
polarities : list of int, optional
Polarity of the AB injection used to compute optimal Vab.
Default is one positive, then one negative.
p_max : float, optional
Maximum power that the device can support/sustain.
diff_vab_lim : float, optional
Minimal change in vab between steps for continuing the search for
optimal vab. If change between two steps is below the diff_vab_lim,
we have found the optimal vab.
n_steps : int, optional
Number of steps to try to find optimal vab. Each step last at least
injection_duration*len(polarities) seconds.
Returns
-------
vab : float
Proposed Vab according to the given strategy.
:param vmn_min:
:param vmn_max:
:param iab_max:
"""
# TODO: Optimise how to pass iab_max, vab_max, vmn_min
# TODO: Update docstring
# TODO: replace vmn_min and vmn_max by vmn_requested
vab_opt = np.abs(vab)
polarities = list(polarities)
if not self.tx.pwr.voltage_adjustable:
vab_opt = self.tx.pwr.voltage
else:
if strategy == 'full_constant':
return vab
if vmn_max is None:
vmn_max = self.rx._voltage_max / 1000.
if iab_max is None:
iab_max = self.current_max
if vmn_min is None:
vmn_min = self.voltage_min
if vab_max is None:
vab_max = self.voltage_max
# print(f'Vmn max: {vmn_max}')
if p_max is None:
p_max = vab_max * iab_max
vab_max = np.abs(vab_max)
vmn_min = np.abs(vmn_min)
# Set gain at min
self.rx.reset_gain()
if vab >= vab_max:
strategy = 'constant'
vab = np.min([np.abs(vab), vab_max])
if strategy == 'constant':
vab_max = vab
vab = vab * .9
strategy = 'vmax'
k = 0
vab_list = np.zeros(n_steps + 1) * np.nan
vab_list[k] = vab
if self.pwr_state == 'off':
self.pwr_state = 'on'
# Switches on measuring LED
self.tx.measuring = 'on'
self.tx.voltage = vab
if self.tx.pwr.pwr_state == 'off':
self.tx.pwr.pwr_state = 'on'
if 1. / self.rx.sampling_rate > pulse_duration:
sampling_rate = 1. / pulse_duration # TODO: check this...
else:
sampling_rate = self.rx.sampling_rate
current, voltage = 0., 0.
diff_vab = np.inf
if strategy == 'vmax' or strategy == 'vmin':
while (k < n_steps) and (diff_vab > diff_vab_lim) and (vab_list[k] < vab_max):
self.exec_logger.event(
f'OhmPiHardware\t_compute_vab_sleep\tbegin\t{datetime.datetime.utcnow()}')
# time.sleep(0.2) # TODO: replace this by discharging DPS on resistor with relay on GPIO5
# (at least for strategy vmin,
# but might be useful in vmax when last vab too high...)
self.exec_logger.event(
f'OhmPiHardware\t_compute_vab_sleep\tend\t{datetime.datetime.utcnow()}')
if strategy == 'vmax':
vmn_min = vmn_max
vabs = []
self._vab_pulses(vab_list[k], sampling_rate=self.rx.sampling_rate,
durations=[pulse_duration, pulse_duration], polarities=polarities)
for pulse in range(len(polarities)):
v = np.where((self.readings[:, 0] > delay) & (self.readings[:, 2] != 0) & (
self.readings[:, 1] == pulse))[0] # NOTE : discard data acquired in the first x ms
iab = self.readings[v, 3] / 1000.
vmn = np.abs(self.readings[v, 4] / 1000. * self.readings[v, 2])
new_vab = self._find_vab(vab_list[k], iab, vmn, p_max, vab_max, iab_max, vmn_max, vmn_min)
diff_vab = np.abs(new_vab - vab_list[k])
vabs.append(new_vab)
# print(f'new_vab: {new_vab}, diff_vab: {diff_vab}\n')
if diff_vab < diff_vab_lim:
self.exec_logger.debug('Compute_vab stopped on vab increase too small')
k = k + 1
vab_list[k] = np.min(vabs)
if self.tx.pwr.voltage_adjustable:
self.tx.voltage = vab_list[k]
if k > n_steps:
self.exec_logger.debug('Compute_vab stopped on maximum number of steps reached')
vab_opt = vab_list[k]
return vab_opt
def discharge_pwr(self):
if self.tx.pwr.voltage_adjustable:
# TODO: implement strategy to discharge pwr based on hardware version => variable in TX should tell if it can discharge the pwr or not
### if discharge relay manually add on mb_2024_0_2, then should not activate AB relays but simply wait for automatic discharge
### if mb_2024_1_X then TX should handle the pwr discharge
# time.sleep(1.0)
self.tx.discharge_pwr()
def _plot_readings(self, save_fig=False, filename=None):
# Plot graphs
flag = False
if self.sp is None:
flag = True
print('self.sp is None, setting it 0')
self.sp = 0
warnings.filterwarnings("ignore", category=DeprecationWarning)
fig, ax = plt.subplots(nrows=5, sharex=True)
ax[0].plot(self.readings[:, 0], self.readings[:, 3], '-r', marker='.', label='iab')
ax[0].set_ylabel('Iab [mA]')
ax[1].plot(self.readings[:, 0], self.readings[:, 4] - self.sp, '-b', marker='.', label='vmn')
ax[1].set_ylabel('Vmn [mV]')
ax[2].plot(self.readings[:, 0], self.readings[:, 2], '-g', marker='.', label='polarity')
ax[2].set_ylabel('polarity [-]')
v = self.readings[:, 2] != 0
ax[3].plot(self.readings[v, 0], (self.readings[v, 2] * (self.readings[v, 4] - self.sp)) / self.readings[v, 3],
'-m', marker='.', label='R [ohm]')
ax[3].set_ylabel('R [ohm]')
ax[4].plot(self.readings[v, 0], np.ones_like(self.readings[v, 0]) * self.sp, '-k', marker='.', label='SP [mV]')
ax[4].set_ylabel('SP [mV]')
if flag: # if it was None, we put it back to None to not interfere with the rest
self.sp = None
# fig.legend()
if save_fig:
if filename is None:
fig.savefig(f'figures/test.png')
else:
fig.savefig(filename)
else:
plt.show()
warnings.resetwarnings()
def calibrate_rx_bias(self):
self.rx.bias += (np.mean(self.readings[self.readings[:, 2] == 1, 4])
+ np.mean(self.readings[self.readings[:, 2] == -1, 4])) / 2.
def vab_square_wave(self, vab, cycle_duration, sampling_rate=None, cycles=3, polarity=1, duty_cycle=1.,
append=False):
"""Performs a Vab injection following a square wave and records full waveform data. Calls in function Vab_pulses.
Parameters
----------
vab: float
Injection voltage [V]
cycle_duration: float
Duration of one cycle within the square wave (in seconds)
sampling_rate: float, None Default None
Sampling rate for Rx readings
cycles: integer, Default: 3
Number of cycles
polarity: 1, 0 , -1
Starting polarity
duty_cycle: float (0 to 1)
Duty cycle of injection wave
append: bool, optional
Default: False
"""
self.exec_logger.event(f'OhmPiHardware\tvab_square_wave\tbegin\t{datetime.datetime.utcnow()}')
switch_pwr_off, switch_tx_pwr_off = False, False
# switches tx pwr on if needed (relays switching dps on and off)
if self.pwr_state == 'off':
self.pwr_state = 'on'
switch_tx_pwr_off = True
# Switches on measuring LED
if self.tx.measuring == 'off':
self.tx.measuring = 'on'
if self.tx.pwr.pwr_state == 'off':
self.tx.pwr.pwr_state = 'on'
switch_pwr_off = True
self._gain_auto(vab=vab)
assert 0. <= duty_cycle <= 1.
if duty_cycle < 1.:
durations = [cycle_duration / 2 * duty_cycle, cycle_duration / 2 * (1. - duty_cycle)] * 2 * cycles
pol = [-int(polarity * np.heaviside(i % 2, -1.)) for i in range(2 * cycles)]
# pol = [-int(self.tx.polarity * np.heaviside(i % 2, -1.)) for i in range(2 * cycles)]
polarities = [0] * (len(pol) * 2)
polarities[0::2] = pol
else:
durations = [cycle_duration / 2] * 2 * cycles
polarities = [-int(polarity * np.heaviside(i % 2, -1.)) for i in range(2 * cycles)]
self._vab_pulses(vab, durations, sampling_rate, polarities=polarities, append=append)
self.exec_logger.event(f'OhmPiHardware\tvab_square_wave\tend\t{datetime.datetime.utcnow()}')
if switch_pwr_off:
self.tx.pwr.pwr_state = 'off'
if switch_tx_pwr_off:
self.pwr_state = 'off'
# Switches off measuring LED
self.tx.measuring = 'off'
def _vab_pulse(self, vab=None, duration=1., sampling_rate=None, polarity=1, append=False):
""" Gets VMN and IAB from a single voltage pulse
"""
# self.tx.polarity = polarity
if sampling_rate is None:
sampling_rate = self.sampling_rate
if self.tx.pwr.voltage_adjustable:
if self.tx.voltage != vab:
self.tx.voltage = vab
else:
vab = self.tx.voltage
# switches dps pwr on if needed
switch_pwr_off = False
if self.tx.pwr.pwr_state == 'off':
self.tx.pwr.pwr_state = 'on'
switch_pwr_off = True
pulse_only = False
# reads current and voltage during the pulse
injection = Thread(target=self._inject, kwargs={'injection_duration': duration, 'polarity': polarity})
readings = Thread(target=self._read_values, kwargs={'sampling_rate': sampling_rate, 'append': append})
readings.start()
injection.start()
readings.join()
injection.join()
self.tx.polarity = 0 # TODO: is this necessary?
if switch_pwr_off:
self.tx.pwr.pwr_state = 'off'
def _vab_pulses(self, vab, durations, sampling_rate, polarities=None, append=False):
switch_pwr_off, switch_tx_pwr_off = False, False
# switches tx pwr on if needed (relays switching dps on and off)
if self.pwr_state == 'off':
self.pwr_state = 'on'
switch_tx_pwr_off = True
n_pulses = len(durations)
self.exec_logger.debug(f'n_pulses: {n_pulses}')
if self.tx.pwr.voltage_adjustable:
self.tx.voltage = vab
else:
vab = self.tx.voltage
# switches dps pwr on if needed
if self.tx.pwr.pwr_state == 'off':
self.tx.pwr.pwr_state = 'on'
switch_pwr_off = True
if sampling_rate is None:
sampling_rate = self.sampling_rate
if polarities is not None:
assert len(polarities) == n_pulses
else:
polarities = [-int(self.tx.polarity * np.heaviside(i % 2, -1.)) for i in
range(n_pulses)] # TODO: this doesn't work if tx.polarity=0 which is the case at init...
if not append:
self._clear_values()
self.sp = None # re-initialise SP before new Vab_pulses
for i in range(n_pulses):
self._vab_pulse(vab=vab, duration=durations[i], sampling_rate=sampling_rate, polarity=polarities[i],
append=True)
if switch_pwr_off:
self.tx.pwr.pwr_state = 'off'
if switch_tx_pwr_off:
self.pwr_state = 'off'
def switch_mux(self, electrodes, roles=None, state='off', **kwargs):
"""Switches on multiplexer relays for given quadrupole.
Parameters
----------
electrodes : list
List of integers representing the electrode ids.
roles : list, optional
List of roles of electrodes, optional
state : str, optional
Either 'on' or 'off'.
"""
self.exec_logger.event(f'OhmPiHardware\tswitch_mux\tbegin\t{datetime.datetime.utcnow()}')
status = True
if roles is None:
roles = ['A', 'B', 'M', 'N']
if len(electrodes) == len(roles):
# TODO: Check that we don't set incompatible roles to the same electrode
elec_dict = {i: [] for i in roles}
mux_workers = []
for idx, elec in enumerate(electrodes):
elec_dict[roles[idx]].append(elec)
try:
mux = self._cabling[(elec, roles[idx])][0]
if mux not in mux_workers:
mux_workers.append(mux)
except KeyError:
self.exec_logger.debug(f'Unable to switch {state} ({elec}, {roles[idx]})'
f': not in cabling and will be ignored...')
status = False
if status:
mux_workers = list(set(mux_workers))
b = Barrier(len(mux_workers) + 1)
self.mux_barrier = b
for idx, mux in enumerate(mux_workers):
# Create a new thread to perform some work
self.mux_boards[mux].barrier = b
kwargs.update({'elec_dict': elec_dict, 'state': state})
mux_workers[idx] = Thread(target=self.mux_boards[mux].switch,
kwargs=kwargs) # TODO: handle minimum delay between two relays activation (to avoid lagging during test_mux at high speed)
mux_workers[idx].start()
try:
self.mux_barrier.wait()
for mux_worker in mux_workers:
mux_worker.join()
except BrokenBarrierError:
self.exec_logger.warning('Switching aborted')
status = False
else:
self.exec_logger.error(
f'Unable to switch {state} electrodes: number of electrodes and number of roles do not match!')
status = False
self.exec_logger.event(f'OhmPiHardware\tswitch_mux\tend\t{datetime.datetime.utcnow()}')
return status
def test_mux(self, channel=None, activation_time=1.0): # TODO: add test in reverse order on each mux board
"""Interactive method to test the multiplexer.
Parameters
----------
channel : tuple, optional
(electrode_nr, role) to test.
activation_time : float, optional
Time in seconds during which the relays are activated.
"""
self.reset_mux()
if channel is not None:
try:
electrodes = [int(channel[0])]
roles = [channel[1]]
except Exception as e:
self.exec_logger.error(f'Unable to parse channel: {e}')
return
self.switch_mux(electrodes, roles, state='on')
time.sleep(activation_time)
self.switch_mux(electrodes, roles, state='off')
else:
list_of_muxes = [i for i in self.mux_boards.keys()]
list_of_muxes.sort()
for m_id in list_of_muxes:
for c in self.mux_boards[m_id].cabling.keys():
self.exec_logger.info(f'Testing electrode {c[0]} with role {c[1]}.')
self.switch_mux(electrodes=[c[0]], roles=[c[1]], state='on')
time.sleep(activation_time)
self.switch_mux(electrodes=[c[0]], roles=[c[1]], state='off')
# for c in self._cabling.keys():
# self.exec_logger.info(f'Testing electrode {c[0]} with role {c[1]}.')
# self.switch_mux(electrodes=[c[0]], roles=[c[1]], state='on')
# time.sleep(activation_time)
# self.switch_mux(electrodes=[c[0]], roles=[c[1]], state='off')
self.exec_logger.info('Test finished.')
def reset_mux(self):
"""Switches off all multiplexer relays.
"""
self.exec_logger.debug('Resetting all mux boards ...')
self.exec_logger.event(f'OhmPiHardware\treset_mux\tbegin\t{datetime.datetime.utcnow()}')
for mux_id, mux in self.mux_boards.items(): # noqa
self.exec_logger.debug(f'Resetting {mux_id}.')
mux.reset()
self.exec_logger.event(f'OhmPiHardware\treset_mux\tend\t{datetime.datetime.utcnow()}')