An error occurred while loading the file. Please try again.
-
Olivier Kaufmann authored3fff71ab
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
import importlib
import datetime
import time
import numpy as np
try:
import matplotlib.pyplot as plt
except Exception:
pass
from ohmpi.hardware_components.abstract_hardware_components import CtlAbstract
from ohmpi.logging_setup import create_stdout_logger
from ohmpi.utils import update_dict
from ohmpi.config import HARDWARE_CONFIG
from threading import Thread, Event, Barrier, BrokenBarrierError
import warnings
# plt.switch_backend('agg') # for thread safe operations...
# Define the default controller, a distinct controller could be defined for each tx, rx or mux board
# when using a distinct controller, the specific controller definition must be included in the component configuration
ctl_module = importlib.import_module(f'ohmpi.hardware_components.{HARDWARE_CONFIG["ctl"]["model"]}')
pwr_module = importlib.import_module(f'ohmpi.hardware_components.{HARDWARE_CONFIG["pwr"]["model"]}')
tx_module = importlib.import_module(f'ohmpi.hardware_components.{HARDWARE_CONFIG["tx"]["model"]}')
rx_module = importlib.import_module(f'ohmpi.hardware_components.{HARDWARE_CONFIG["rx"]["model"]}')
MUX_DEFAULT = HARDWARE_CONFIG['mux']['default']
MUX_CONFIG = HARDWARE_CONFIG['mux']['boards']
for k, v in MUX_CONFIG.items():
MUX_CONFIG[k].update({'id': k})
for k2, v2 in MUX_DEFAULT.items():
MUX_CONFIG[k].update({k2: MUX_CONFIG[k].pop(k2, v2)})
TX_CONFIG = HARDWARE_CONFIG['tx']
for k, v in tx_module.SPECS['tx'].items():
try:
TX_CONFIG.update({k: TX_CONFIG.pop(k, v['default'])})
except Exception as e:
print(f'Cannot set value {v} in TX_CONFIG[{k}]:\n{e}')
RX_CONFIG = HARDWARE_CONFIG['rx']
for k, v in rx_module.SPECS['rx'].items():
try:
RX_CONFIG.update({k: RX_CONFIG.pop(k, v['default'])})
except Exception as e:
print(f'Cannot set value {v} in RX_CONFIG[{k}]:\n{e}')
current_max = np.min([TX_CONFIG['current_max'], HARDWARE_CONFIG['pwr'].pop('current_max', np.inf), # TODO: replace 50 by a TX config
np.min(np.hstack((np.inf, [MUX_CONFIG[i].pop('current_max', np.inf) for i in MUX_CONFIG.keys()])))])
voltage_max = np.min([TX_CONFIG['voltage_max'],
np.min(np.hstack((np.inf, [MUX_CONFIG[i].pop('voltage_max', np.inf) for i in MUX_CONFIG.keys()])))])
voltage_min = RX_CONFIG['voltage_min']
print(f'Current max: {current_max:.2f}')
def elapsed_seconds(start_time):
lap = datetime.datetime.utcnow() - start_time
return lap.total_seconds()
class OhmPiHardware:
def __init__(self, **kwargs):
# OhmPiHardware initialization
self.exec_logger = kwargs.pop('exec_logger', create_stdout_logger('exec_hw'))
self.exec_logger.event(f'OhmPiHardware\tinit\tbegin\t{datetime.datetime.utcnow()}')
self.data_logger = kwargs.pop('exec_logger', create_stdout_logger('data_hw'))
self.soh_logger = kwargs.pop('soh_logger', create_stdout_logger('soh_hw'))
self.tx_sync = Event()
# Main Controller initialization
HARDWARE_CONFIG['ctl'].pop('model')
HARDWARE_CONFIG['ctl'].update({'exec_logger': self.exec_logger, 'data_logger': self.data_logger,
'soh_logger': self.soh_logger})
self.ctl = kwargs.pop('ctl', ctl_module.Ctl(**HARDWARE_CONFIG['ctl']))
# use controller as defined in kwargs if present otherwise use controller as defined in config.
if isinstance(self.ctl, dict):
ctl_mod = self.ctl.pop('model', self.ctl)
if isinstance(ctl_mod, str):
ctl_mod = importlib.import_module(f'ohmpi.hardware_components.{ctl_mod}')
self.ctl = ctl_mod.Ctl(**self.ctl)
# Initialize RX
HARDWARE_CONFIG['rx'].pop('model')
HARDWARE_CONFIG['rx'].update(**HARDWARE_CONFIG['rx']) # TODO: delete me ?
HARDWARE_CONFIG['rx'].update({'ctl': HARDWARE_CONFIG['rx'].pop('ctl', self.ctl)})
if isinstance(HARDWARE_CONFIG['rx']['ctl'], dict):
ctl_mod = HARDWARE_CONFIG['rx']['ctl'].pop('model', self.ctl)
if isinstance(ctl_mod, str):
ctl_mod = importlib.import_module(f'ohmpi.hardware_components.{ctl_mod}')
HARDWARE_CONFIG['rx']['ctl'] = ctl_mod.Ctl(**HARDWARE_CONFIG['rx']['ctl'])
HARDWARE_CONFIG['rx'].update({'connection':
HARDWARE_CONFIG['rx'].pop('connection',
HARDWARE_CONFIG['rx']['ctl'].interfaces[
HARDWARE_CONFIG['rx'].pop(
'interface_name', 'i2c')])})
HARDWARE_CONFIG['rx'].update({'exec_logger': self.exec_logger, 'data_logger': self.data_logger,
'soh_logger': self.soh_logger})
HARDWARE_CONFIG['tx'].pop('ctl', None)
self.rx = kwargs.pop('rx', rx_module.Rx(**HARDWARE_CONFIG['rx']))
# Initialize power source
HARDWARE_CONFIG['pwr'].pop('model')
HARDWARE_CONFIG['pwr'].update(**HARDWARE_CONFIG['pwr']) # NOTE: Explain why this is needed or delete me
HARDWARE_CONFIG['pwr'].update({'ctl': HARDWARE_CONFIG['pwr'].pop('ctl', self.ctl)})
HARDWARE_CONFIG['pwr'].update({'current_max': current_max})
if isinstance(HARDWARE_CONFIG['pwr']['ctl'], dict):
ctl_mod = HARDWARE_CONFIG['pwr']['ctl'].pop('model', self.ctl)
if isinstance(ctl_mod, str):
ctl_mod = importlib.import_module(f'ohmpi.hardware_components.{ctl_mod}')
HARDWARE_CONFIG['pwr']['ctl'] = ctl_mod.Ctl(**HARDWARE_CONFIG['pwr']['ctl'])
#if 'interface_name' in HARDWARE_CONFIG['pwr']:
HARDWARE_CONFIG['pwr'].update({
'connection': HARDWARE_CONFIG['pwr'].pop(
'connection', HARDWARE_CONFIG['pwr']['ctl'].interfaces[
HARDWARE_CONFIG['pwr'].pop('interface_name', None)])})
HARDWARE_CONFIG['pwr'].update({'exec_logger': self.exec_logger, 'data_logger': self.data_logger,
'soh_logger': self.soh_logger})
self.pwr = kwargs.pop('pwr', pwr_module.Pwr(**HARDWARE_CONFIG['pwr']))
# Initialize TX
HARDWARE_CONFIG['tx'].pop('model')
HARDWARE_CONFIG['tx'].update(**HARDWARE_CONFIG['tx'])
HARDWARE_CONFIG['tx'].update({'tx_sync': self.tx_sync})
HARDWARE_CONFIG['tx'].update({'ctl': HARDWARE_CONFIG['tx'].pop('ctl', self.ctl)})
if isinstance(HARDWARE_CONFIG['tx']['ctl'], dict):
ctl_mod = HARDWARE_CONFIG['tx']['ctl'].pop('model', self.ctl)
if isinstance(ctl_mod, str):
ctl_mod = importlib.import_module(f'ohmpi.hardware_components.{ctl_mod}')
HARDWARE_CONFIG['tx']['ctl'] = ctl_mod.Ctl(**HARDWARE_CONFIG['tx']['ctl'])
HARDWARE_CONFIG['tx'].update({'connection': HARDWARE_CONFIG['tx'].pop('connection',
HARDWARE_CONFIG['tx']['ctl'].interfaces[
HARDWARE_CONFIG['tx'].pop(
'interface_name', 'i2c')])})
HARDWARE_CONFIG['tx'].pop('ctl', None)
HARDWARE_CONFIG['tx'].update({'exec_logger': self.exec_logger, 'data_logger': self.data_logger,
'soh_logger': self.soh_logger})
self.tx = kwargs.pop('tx', tx_module.Tx(**HARDWARE_CONFIG['tx']))
if isinstance(self.tx, dict):
self.tx = tx_module.Tx(**self.tx)
self.tx.pwr = self.pwr
self.tx.pwr._current_max = current_max
# Initialize Muxes
self._cabling = kwargs.pop('cabling', {})
self.mux_boards = {}
for mux_id, mux_config in MUX_CONFIG.items():
mux_config.update({'exec_logger': self.exec_logger, 'data_logger': self.data_logger,
'soh_logger': self.soh_logger})
mux_config.update(**MUX_CONFIG[mux_id])
mux_config.update({'ctl': mux_config.pop('ctl', self.ctl)})
mux_module = importlib.import_module(f'ohmpi.hardware_components.{mux_config["model"]}')
if isinstance(mux_config['ctl'], dict):
mux_ctl_module = importlib.import_module(f'ohmpi.hardware_components.{mux_config["ctl"]["model"]}')
mux_config['ctl'] = mux_ctl_module.Ctl(**mux_config['ctl']) # (**self.ctl)
assert issubclass(type(mux_config['ctl']), CtlAbstract)
mux_config.update({'connection': mux_config.pop('connection', mux_config['ctl'].interfaces[mux_config.pop('interface_name', 'i2c')])})
mux_config['id'] = mux_id
self.mux_boards[mux_id] = mux_module.Mux(**mux_config)
self.mux_barrier = Barrier(len(self.mux_boards) + 1)
self._cabling = {}
for mux_id, mux in self.mux_boards.items():
mux.barrier = self.mux_barrier
for k, v in mux.cabling.items():
update_dict(self._cabling, {k: (mux_id, k[0])})
# Complete OhmPiHardware initialization
self.readings = np.array([]) # time series of acquired data
self._start_time = None # time of the beginning of a readings acquisition
self._pulse = 0 # pulse number
self.exec_logger.event(f'OhmPiHardware\tinit\tend\t{datetime.datetime.utcnow()}')
self._pwr_state = 'off'
@property
def pwr_state(self):
return self._pwr_state
@pwr_state.setter
def pwr_state(self, state):
if state == 'on':
self.tx.pwr_state = 'on'
self._pwr_state = 'on'
elif state == 'off':
self.tx.pwr_state = 'off'
self._pwr_state = 'off'
def _clear_values(self):
self.readings = np.array([])
self._start_time = None
self._pulse = 0
def _gain_auto(self, polarities=(1, -1), vab=5., switch_pwr_off=False): #TODO: improve _gain_auto
self.exec_logger.event(f'OhmPiHardware\ttx_rx_gain_auto\tbegin\t{datetime.datetime.utcnow()}')
current, voltage = 0., 0.
if self.tx.pwr.voltage_adjustable:
self.tx.voltage = vab
if self.tx.pwr.pwr_state == 'off':
self.tx.pwr.pwr_state = 'on'
switch_pwr_off = True
tx_gains = []
rx_gains = []
for pol in polarities:
# self.tx.polarity = pol
# set gains automatically
injection = Thread(target=self._inject, kwargs={'injection_duration': 0.2, 'polarity': pol})
# readings = Thread(target=self._read_values)
get_tx_gain = Thread(target=self.tx.gain_auto)
get_rx_gain = Thread(target=self.rx.gain_auto)
injection.start()
self.tx_sync.wait()
get_tx_gain.start() # TODO: add a barrier to synchronize?
get_rx_gain.start()
get_tx_gain.join()
get_rx_gain.join()
injection.join()
tx_gains.append(self.tx.gain)
rx_gains.append(self.rx.gain)
# v = self.readings[:, 2] != 0
# current = max(current, np.mean(self.readings[v, 3]))
# voltage = max(voltage, np.abs(np.mean(self.readings[v, 2] * self.readings[v, 4])))
self.tx.polarity = 0
self.tx.gain = min(tx_gains)
self.rx.gain = min(rx_gains)
# self.rx.gain_auto(voltage)
if switch_pwr_off:
self.tx.pwr.pwr_state = 'off'
self.exec_logger.event(f'OhmPiHardware\ttx_rx_gain_auto\tend\t{datetime.datetime.utcnow()}')
def _inject(self, polarity=1, injection_duration=None): # TODO: deal with voltage or current pulse
self.exec_logger.event(f'OhmPiHardware\tinject\tbegin\t{datetime.datetime.utcnow()}')
self.tx.voltage_pulse(length=injection_duration, polarity=polarity)
self.exec_logger.event(f'OhmPiHardware\tinject\tend\t{datetime.datetime.utcnow()}')
def _set_mux_barrier(self):
self.mux_barrier = Barrier(len(self.mux_boards) + 1)
for mux in self.mux_boards:
mux.barrier = self.mux_barrier
@property
def pulses(self): # TODO: is this obsolete?
pulses = {}
for i in np.unique(self.readings[:, 1]):
r = self.readings[self.readings[:, 1] == i, :]
assert np.all(np.isclose(r[:, 2], r[0, 2])) # Polarity cannot change within a pulse
# TODO: check how to generalize in case of multi-channel RX
pulses.update({i: {'polarity': int(r[0, 2]), 'iab': r[:, 3], 'vmn': r[:, 4]}})
return pulses
def _read_values(self, sampling_rate=None, append=False): # noqa
self.exec_logger.event(f'OhmPiHardware\tread_values\tbegin\t{datetime.datetime.utcnow()}')
if not append:
self._clear_values()
_readings = []
else:
_readings = self.readings.tolist()
if sampling_rate is None:
sampling_rate = self.rx.sampling_rate
sample = 0
lap = datetime.datetime.utcnow() # just in case tx_sync is not set immediately after passing wait
self.tx_sync.wait() #
if not append or self._start_time is None:
self._start_time = datetime.datetime.utcnow()
# TODO: Check if replacing the following two options by a reset_buffer method of TX would be OK
time.sleep(np.max([self.rx._latency, self.tx._latency])) # if continuous mode
# _ = self.rx.voltage # if not continuous mode
while self.tx_sync.is_set():
lap = datetime.datetime.utcnow()
r = [elapsed_seconds(self._start_time), self._pulse, self.tx.polarity, self.tx.current, self.rx.voltage]
if self.tx_sync.is_set():
sample += 1
_readings.append(r)
sleep_time = self._start_time + datetime.timedelta(seconds=sample / sampling_rate) - lap
if sleep_time.total_seconds() < 0.:
# TODO: count how many samples were skipped to make a stat that could be used to qualify pulses
sample += int(sampling_rate * np.abs(sleep_time.total_seconds())) + 1
sleep_time = self._start_time + datetime.timedelta(seconds=sample / sampling_rate) - lap
time.sleep(np.max([0., sleep_time.total_seconds()]))
self.exec_logger.debug(f'pulse {self._pulse}: elapsed time {(lap-self._start_time).total_seconds()} s')
self.exec_logger.debug(f'pulse {self._pulse}: total samples {len(_readings)}')
self.readings = np.array(_readings)
self._pulse += 1
self.exec_logger.event(f'OhmPiHardware\tread_values\tend\t{datetime.datetime.utcnow()}')
def last_resistance(self, delay=0.):
v = np.where((self.readings[:, 0] >= delay) & (self.readings[:, 2] != 0))[0]
if len(v) > 1:
# return np.mean(np.abs(self.readings[v, 4] - self.sp) / self.readings[v, 3])
return np.mean(self.readings[v, 2] * (self.readings[v, 4] - self.sp) / self.readings[v, 3])
else:
return np.nan
def last_dev(self, delay=0.):
v = np.where((self.readings[:, 0] >= delay) & (self.readings[:, 2] != 0))[0]
if len(v) > 1:
return 100. * np.std(self.readings[v, 2] * (self.readings[v, 4] - self.sp) / self.readings[v, 3]) / self.last_resistance(delay=delay)
else:
return np.nan
@property
def sp(self): # TODO: allow for different strategies for computing sp (i.e. when sp drift is not linear)
if self.readings.shape == (0,) or len(self.readings[self.readings[:, 2] == 1, :]) < 1 or \
len(self.readings[self.readings[:, 2] == -1, :]) < 1:
self.exec_logger.warning('Unable to compute sp: readings should at least contain one positive and one '
'negative pulse')
return 0.
else:
n_pulses = int(np.max(self.readings[:, 1]))
polarity = np.array([np.median(self.readings[self.readings[:, 1] == i, 2]) for i in range(n_pulses + 1)])
mean_vmn = []
mean_iab = []
for i in range(n_pulses + 1):
mean_vmn.append(np.mean(self.readings[self.readings[:, 1] == i, 4]))
mean_iab.append(np.mean(self.readings[self.readings[:, 1] == i, 3]))
mean_vmn = np.array(mean_vmn)
mean_iab = np.array(mean_iab)
sp = np.mean(mean_vmn[np.ix_(polarity == 1)] + mean_vmn[np.ix_(polarity == -1)]) / 2
return sp
def _find_vab(self, vab, iab, vmn, p_max, vab_max, iab_max, vmn_max):
iab_mean = np.mean(iab)
iab_std = np.std(iab)
vmn_mean = np.mean(vmn)
vmn_std = np.std(vmn)
print(f'iab: ({iab_mean:.5f}, {iab_std:5f}), vmn: ({vmn_mean:.4f}, {vmn_std:.4f})')
# bounds on iab
iab_upper_bound = iab_mean + 2 * iab_std
iab_lower_bound = np.max([0.00001, iab_mean - 2 * iab_std])
# bounds on vmn
vmn_upper_bound = vmn_mean + 2 * vmn_std
vmn_lower_bound = np.max([0.000001, vmn_mean - 2 * vmn_std])
# bounds on rab
rab_lower_bound = np.max([0.1, np.abs(vab / iab_upper_bound)])
rab_upper_bound = np.max([0.1, np.abs(vab / iab_lower_bound)])
# bounds on r
r_lower_bound = np.max([0.1, np.abs(vmn_lower_bound / iab_upper_bound)])
r_upper_bound = np.max([0.1, np.abs(vmn_upper_bound / iab_lower_bound)])
# conditions for vab update
cond_vmn_max = rab_lower_bound / r_upper_bound * vmn_max
cond_p_max = np.sqrt(p_max * rab_lower_bound)
cond_iab_max = rab_lower_bound * iab_max
print(f'Rab: [{rab_lower_bound:.1f}, {rab_upper_bound:.1f}], R: [{r_lower_bound:.1f},{r_upper_bound:.1f}]')
print(f'{k}: [{vab_max:.1f}, {cond_vmn_max:.1f}, {cond_p_max:.1f}, {cond_iab_max:.1f}]')
new_vab = np.min([vab_max, cond_vmn_max, cond_p_max, cond_iab_max])
if new_vab == vab_max:
print('Vab bounded by Vab max')
elif new_vab == cond_p_max:
print('Vab bounded by P max')
elif new_vab == cond_iab_max:
print('Vab bounded by Iab max')
else:
assert new_vab == cond_vmn_max
print('Vab bounded by Vmn max')
return new_vab
def _compute_tx_volt(self, pulse_duration=0.1, strategy='vmax', tx_volt=5., vab_max=voltage_max,
iab_max=current_max, vmn_max=None, vmn_min=voltage_min, polarities=(1, -1), delay=0.05,
p_max=None, diff_vab_lim=2.5, n_steps=4):
# TODO: Optimise how to pass iab_max, vab_max, vmn_min
"""Estimates best Tx voltage based on different strategies.
At first a half-cycle is made for a short duration with a fixed
known voltage. This gives us Iab and Rab. We also measure Vmn.
A constant c = vmn/iab is computed (only depends on geometric
factor and ground resistivity, that doesn't change during a
quadrupole). Then depending on the strategy, we compute which
vab to inject to reach the minimum/maximum Iab current or
min/max Vmn.
This function also compute the polarity on Vmn (on which pin
of the ADS1115 we need to measure Vmn to get the positive value).
Parameters
----------
pulse_duration : float, optional
Time in seconds for the pulse used to compute Rab.
strategy : str, optional
Either:
- vmax : compute Vab to reach a maximum Iab without exceeding vab_max
- vmin : compute Vab to reach at least vmn_min
- constant : apply given Vab
tx_volt : float, optional
Voltage to apply for guessing the best voltage. 5 V applied
by default. If strategy "constant" is chosen, constant voltage
to applied is "tx_volt".
vab_max : float, optional
Maximum injection voltage to apply to tx (used by all strategies)
vmn_min : float, optional
Minimum voltage target for rx (used by vmin strategy)
Returns
-------
vab : float
Proposed Vab according to the given strategy.
polarity:
Polarity of VMN relative to polarity of VAB
rab : float
Resistance between injection electrodes
"""
if self.tx.pwr.voltage_adjustable:
if vmn_max is None:
vmn_max = self.rx._voltage_max / 1000.
print(f'Vmn max: {vmn_max}')
if p_max is None:
p_max = vab_max * iab_max
# Set gain at min
self.rx.reset_gain()
vab_max = np.abs(vab_max)
vmn_min = np.abs(vmn_min)
k = 0
vab_list = np.zeros(n_steps + 1) * np.nan
vab = np.min([np.abs(tx_volt), vab_max])
vab_list[k] = vab
# self.tx.turn_on()
switch_pwr_off, switch_tx_pwr_off = False, False # TODO: check if these should be moved in kwargs
if self.pwr_state == 'off':
self.pwr_state = 'on'
switch_tx_pwr_off = True
self.tx.voltage = vab
if self.tx.pwr.pwr_state == 'off':
self.tx.pwr.pwr_state = 'on'
switch_pwr_off = True
if 1. / self.rx.sampling_rate > pulse_duration:
sampling_rate = 1. / pulse_duration # TODO: check this...
else:
sampling_rate = self.rx.sampling_rate
current, voltage = 0., 0.
diff_vab = np.inf
while (k < n_steps) and (diff_vab > diff_vab_lim):
vabs = []
self._vab_pulses(vab_list[k], sampling_rate=self.rx.sampling_rate, durations=[0.2, 0.2], polarities=[1, -1])
for pulse in range(2):
v = np.where((self.readings[:, 0] > delay) & (self.readings[:, 2] != 0) & (self.readings[:, 1]==pulse))[0] # NOTE : discard data aquired in the first x ms
iab = self.readings[v, 3]/1000.
vmn = np.abs(self.readings[v, 4]/1000. * self.readings[v, 2])
new_vab = self._find_vab(vab_list[k], iab, vmn, p_max, vab_max, iab_max, vmn_max)
diff_vab = np.abs(new_vab - vab_list[k])
vabs.append(new_vab)
print(f'new_vab: {new_vab}, diff_vab: {diff_vab}\n')
if diff_vab < diff_vab_lim:
print('stopped on vab increase too small')
else:
print('stopped on maximum number of steps reached')
k = k + 1
vab_list[k] = np.min(vabs)
time.sleep(0.5)
if self.tx.pwr.voltage_adjustable:
self.tx.voltage = vab_list[k]
vab_opt = vab_list[k]
# print(f'Selected Vab: {vab_opt:.2f}')
# if switch_pwr_off:
# self.tx.pwr.pwr_state = 'off'
else:
vab_opt = tx_volt
# if strategy == 'vmax':
# # implement different strategies
# if vab < vab_max and iab < current_max:
# vab = vab * np.min([0.9 * vab_max / vab, 0.9 * current_max / iab]) # TODO: check if setting at 90% of max as a safety margin is OK
# self.tx.exec_logger.debug(f'vmax strategy: setting VAB to {vab} V.')
# elif strategy == 'vmin':
# if vab <= vab_max and iab < current_max:
# vab = vab * np.min([0.9 * vab_max / vab, vmn_min / np.abs(vmn), 0.9 * current_max / iab]) # TODO: check if setting at 90% of max as a safety margin is OK
# elif strategy != 'constant':
# self.tx.exec_logger.warning(f'Unknown strategy {strategy} for setting VAB! Using {vab} V')
# else:
# self.tx.exec_logger.debug(f'Constant strategy for setting VAB, using {vab} V')
# # self.tx.turn_off()
# if switch_pwr_off:
# self.tx.pwr.pwr_state = 'off'
# if switch_tx_pwr_off:
# self.tx.pwr_state = 'off'
# rab = (np.abs(vab) * 1000.) / iab
# self.exec_logger.debug(f'RAB = {rab:.2f} Ohms')
# if vmn < 0:
# polarity = -1 # TODO: check if we really need to return polarity
# else:
# polarity = 1
return vab_opt
def _plot_readings(self, save_fig=False):
# Plot graphs
warnings.filterwarnings("ignore", category=DeprecationWarning)
fig, ax = plt.subplots(nrows=5, sharex=True)
ax[0].plot(self.readings[:, 0], self.readings[:, 3], '-r', marker='.', label='iab')
ax[0].set_ylabel('Iab [mA]')
ax[1].plot(self.readings[:, 0], self.readings[:, 4] - self.sp , '-b', marker='.', label='vmn')
ax[1].set_ylabel('Vmn [mV]')
ax[2].plot(self.readings[:, 0], self.readings[:, 2], '-g', marker='.', label='polarity')
ax[2].set_ylabel('polarity [-]')
v = self.readings[:, 2] != 0
ax[3].plot(self.readings[v, 0], (self.readings[v, 2] * (self.readings[v, 4] - self.sp)) / self.readings[v, 3],
'-m', marker='.', label='R [ohm]')
ax[3].set_ylabel('R [ohm]')
ax[4].plot(self.readings[v, 0], np.ones_like(self.readings[v, 0]) * self.sp, '-k', marker='.', label='SP [mV]')
ax[4].set_ylabel('SP [mV]')
# fig.legend()
if save_fig:
fig.savefig(f'figures/test.png')
else:
plt.show()
warnings.resetwarnings()
def calibrate_rx_bias(self):
self.rx._bias += (np.mean(self.readings[self.readings[:, 2] == 1, 4])
+ np.mean(self.readings[self.readings[:, 2] == -1, 4])) / 2.
def vab_square_wave(self, vab, cycle_duration, sampling_rate=None, cycles=3, polarity=1, duty_cycle=1.,
append=False):
self.exec_logger.event(f'OhmPiHardware\tvab_square_wave\tbegin\t{datetime.datetime.utcnow()}')
switch_pwr_off, switch_tx_pwr_off = False, False
if self.pwr_state == 'off':
self.pwr_state = 'on'
switch_tx_pwr_off = True
# if self.tx.pwr.pwr_state == 'off':
# self.tx.pwr.pwr_state = 'on'
# switch_pwr_off = True
self._gain_auto(vab=vab)
assert 0. <= duty_cycle <= 1.
if duty_cycle < 1.:
durations = [cycle_duration/2 * duty_cycle, cycle_duration/2 * (1.-duty_cycle)] * 2 * cycles
pol = [-int(polarity * np.heaviside(i % 2, -1.)) for i in range(2 * cycles)]
# pol = [-int(self.tx.polarity * np.heaviside(i % 2, -1.)) for i in range(2 * cycles)]
polarities = [0] * (len(pol) * 2)
polarities[0::2] = pol
else:
durations = [cycle_duration / 2] * 2 * cycles
polarities = None
self._vab_pulses(vab, durations, sampling_rate, polarities=polarities, append=append)
self.exec_logger.event(f'OhmPiHardware\tvab_square_wave\tend\t{datetime.datetime.utcnow()}')
if switch_pwr_off:
self.tx.pwr.pwr_state = 'off'
if switch_tx_pwr_off:
self.pwr_state = 'off'
def _vab_pulse(self, vab=None, duration=1., sampling_rate=None, polarity=1, append=False):
""" Gets VMN and IAB from a single voltage pulse
"""
#self.tx.polarity = polarity
if sampling_rate is None:
sampling_rate = RX_CONFIG['sampling_rate']
if self.tx.pwr.voltage_adjustable:
if self.tx.voltage != vab:
self.tx.voltage = vab
else:
vab = self.tx.voltage
# reads current and voltage during the pulse
injection = Thread(target=self._inject, kwargs={'injection_duration': duration, 'polarity': polarity})
readings = Thread(target=self._read_values, kwargs={'sampling_rate': sampling_rate, 'append': append})
readings.start()
injection.start()
readings.join()
injection.join()
self.tx.polarity = 0 #TODO: is this necessary?
def _vab_pulses(self, vab, durations, sampling_rate, polarities=None, append=False):
switch_pwr_off, switch_tx_pwr_off = False, False
if self.pwr_state == 'off':
self.pwr_state = 'on'
switch_pwr_off = True
n_pulses = len(durations)
self.exec_logger.debug(f'n_pulses: {n_pulses}')
if self.tx.pwr.voltage_adjustable:
self.tx.voltage = vab
else:
vab = self.tx.voltage
if self.tx.pwr.pwr_state == 'off':
self.tx.pwr.pwr_state = 'on'
switch_pwr_off = True
if sampling_rate is None:
sampling_rate = RX_CONFIG['sampling_rate']
if polarities is not None:
assert len(polarities) == n_pulses
else:
polarities = [-int(self.tx.polarity * np.heaviside(i % 2, -1.)) for i in range(n_pulses)]
if not append:
self._clear_values()
for i in range(n_pulses):
self._vab_pulse(vab=vab, duration=durations[i], sampling_rate=sampling_rate, polarity=polarities[i],
append=True)
if switch_pwr_off:
self.tx.pwr.pwr_state = 'off'
if switch_tx_pwr_off:
self.pwr_state = 'off'
def switch_mux(self, electrodes, roles=None, state='off', **kwargs):
"""Switches on multiplexer relays for given quadrupole.
Parameters
----------
electrodes : list
List of integers representing the electrode ids.
roles : list, optional
List of roles of electrodes, optional
state : str, optional
Either 'on' or 'off'.
"""
self.exec_logger.event(f'OhmPiHardware\tswitch_mux\tbegin\t{datetime.datetime.utcnow()}')
status = True
if roles is None:
roles = ['A', 'B', 'M', 'N']
if len(electrodes) == len(roles):
# TODO: Check that we don't set incompatible roles to the same electrode
elec_dict = {i: [] for i in roles}
mux_workers = []
for idx, elec in enumerate(electrodes):
elec_dict[roles[idx]].append(elec)
try:
mux = self._cabling[(elec, roles[idx])][0]
if mux not in mux_workers:
mux_workers.append(mux)
except KeyError:
self.exec_logger.debug(f'Unable to switch {state} ({elec}, {roles[idx]})'
f': not in cabling and will be ignored...')
status = False
if status:
mux_workers = list(set(mux_workers))
b = Barrier(len(mux_workers)+1)
self.mux_barrier = b
for idx, mux in enumerate(mux_workers):
# Create a new thread to perform some work
self.mux_boards[mux].barrier = b
kwargs.update({'elec_dict': elec_dict, 'state': state})
mux_workers[idx] = Thread(target=self.mux_boards[mux].switch, kwargs=kwargs) # TODO: handle minimum delay between two relays activation (to avoid lagging during test_mux at high speed)
mux_workers[idx].start()
try:
self.mux_barrier.wait()
for mux_worker in mux_workers:
mux_worker.join()
except BrokenBarrierError:
self.exec_logger.warning('Switching aborted')
status = False
else:
self.exec_logger.error(
f'Unable to switch {state} electrodes: number of electrodes and number of roles do not match!')
status = False
self.exec_logger.event(f'OhmPiHardware\tswitch_mux\tend\t{datetime.datetime.utcnow()}')
return status
def test_mux(self, channel=None, activation_time=1.0): #TODO: add test in reverse order on each mux board
"""Interactive method to test the multiplexer.
Parameters
----------
channel : tuple, optional
(electrode_nr, role) to test.
activation_time : float, optional
Time in seconds during which the relays are activated.
"""
self.reset_mux()
if channel is not None:
try:
electrodes = [int(channel[0])]
roles = [channel[1]]
except Exception as e:
self.exec_logger.error(f'Unable to parse channel: {e}')
return
self.switch_mux(electrodes, roles, state='on')
time.sleep(activation_time)
self.switch_mux(electrodes, roles, state='off')
else:
list_of_muxes = [i for i in self.mux_boards.keys()]
list_of_muxes.sort()
for m_id in list_of_muxes:
for c in self.mux_boards[m_id].cabling.keys():
self.exec_logger.info(f'Testing electrode {c[0]} with role {c[1]}.')
self.switch_mux(electrodes=[c[0]], roles=[c[1]], state='on')
time.sleep(activation_time)
self.switch_mux(electrodes=[c[0]], roles=[c[1]], state='off')
# for c in self._cabling.keys():
# self.exec_logger.info(f'Testing electrode {c[0]} with role {c[1]}.')
# self.switch_mux(electrodes=[c[0]], roles=[c[1]], state='on')
# time.sleep(activation_time)
# self.switch_mux(electrodes=[c[0]], roles=[c[1]], state='off')
self.exec_logger.info('Test finished.')
def reset_mux(self):
"""Switches off all multiplexer relays.
"""
self.exec_logger.debug('Resetting all mux boards ...')
self.exec_logger.event(f'OhmPiHardware\treset_mux\tbegin\t{datetime.datetime.utcnow()}')
for mux_id, mux in self.mux_boards.items(): # noqa
self.exec_logger.debug(f'Resetting {mux_id}.')
mux.reset()
self.exec_logger.event(f'OhmPiHardware\treset_mux\tend\t{datetime.datetime.utcnow()}')