An error occurred while loading the file. Please try again.
-
Arnaud WATLET authored47ec203e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
from ohmpi import OhmPi
import matplotlib.pyplot as plt
import time
import numpy as np
import adafruit_ads1x15.ads1115 as ads # noqa
from adafruit_ads1x15.analog_in import AnalogIn # noqa
import os
from utils import get_platform
import json
import warnings
from copy import deepcopy
import numpy as np
import csv
import time
import shutil
from datetime import datetime
from termcolor import colored
import threading
from logging_setup import setup_loggers
from config import MQTT_CONTROL_CONFIG, OHMPI_CONFIG, EXEC_LOGGING_CONFIG
from logging import DEBUG
# finish import (done only when class is instantiated as some libs are only available on arm64 platform)
try:
import board # noqa
import busio # noqa
import adafruit_tca9548a # noqa
import adafruit_ads1x15.ads1115 as ads # noqa
from adafruit_ads1x15.analog_in import AnalogIn # noqa
from adafruit_mcp230xx.mcp23008 import MCP23008 # noqa
from adafruit_mcp230xx.mcp23017 import MCP23017 # noqa
import digitalio # noqa
from digitalio import Direction # noqa
from gpiozero import CPUTemperature # noqa
import minimalmodbus # noqa
arm64_imports = True
except ImportError as error:
if EXEC_LOGGING_CONFIG['logging_level'] == DEBUG:
print(colored(f'Import error: {error}', 'yellow'))
arm64_imports = False
except Exception as error:
print(colored(f'Unexpected error: {error}', 'red'))
arm64_imports = None
def append_and_save_new(filename: str, last_measurement: dict, cmd_id=None):
"""Appends and saves the last measurement dict.
Parameters
----------
filename : str
filename to save the last measurement dataframe
last_measurement : dict
Last measurement taken in the form of a python dictionary
cmd_id : str, optional
Unique command identifier
"""
last_measurement = deepcopy(last_measurement)
if 'fulldata' in last_measurement:
d = last_measurement['fulldata']
n = d.shape[0]
if n > 1:
idic = dict(zip(['i' + str(i) for i in range(n)], d[:, 0]))
udic = dict(zip(['u' + str(i) for i in range(n)], d[:, 1]))
tdic = dict(zip(['t' + str(i) for i in range(n)], d[:, 2]))
uxdic = dict(zip(['ux' + str(i) for i in range(n)], d[:, 3]))
uydic = dict(zip(['uy' + str(i) for i in range(n)], d[:, 4]))
last_measurement.update(idic)
last_measurement.update(udic)
last_measurement.update(tdic)
last_measurement.update(uxdic)
last_measurement.update(uydic)
last_measurement.pop('fulldata')
if os.path.isfile(filename):
# Load data file and append data to it
with open(filename, 'a') as f:
w = csv.DictWriter(f, last_measurement.keys())
w.writerow(last_measurement)
# last_measurement.to_csv(f, header=False)
else:
# create data file and add headers
with open(filename, 'a') as f:
w = csv.DictWriter(f, last_measurement.keys())
w.writeheader()
w.writerow(last_measurement)
# def _read_voltage(self,ads,ads_pin):
#
def run_measurement_old(self, quad=None, nb_stack=None, injection_duration=None,
autogain=True, strategy='constant', tx_volt=5, best_tx_injtime=0.1,
cmd_id=None, duty_cycle=0.9):
"""Measures on a quadrupole and returns transfer resistance.
Parameters
----------
quad : iterable (list of int)
Quadrupole to measure, just for labelling. Only switch_mux_on/off
really create the route to the electrodes.
nb_stack : int, optional
Number of stacks. A stacl is considered two half-cycles (one
positive, one negative).
injection_duration : int, optional
Injection time in seconds.
autogain : bool, optional
If True, will adapt the gain of the ADS1115 to maximize the
resolution of the reading.
strategy : str, optional
(V3.0 only) If we search for best voltage (tx_volt == 0), we can choose
vmax strategy : find the highest voltage that stays in the range
For a constant value, just set the tx_volt.
tx_volt : float, optional
(V3.0 only) If specified, voltage will be imposed. If 0, we will look
for the best voltage. If the best Tx cannot be found, no
measurement will be taken and values will be NaN.
best_tx_injtime : float, optional
(V3.0 only) Injection time in seconds used for finding the best voltage.
cmd_id : str, optional
Unique command identifier
"""
self.exec_logger.debug('Starting measurement')
self.exec_logger.debug('Waiting for data')
# check arguments
if quad is None:
quad = [0, 0, 0, 0]
if self.on_pi:
if nb_stack is None:
nb_stack = self.settings['nb_stack']
if injection_duration is None:
injection_duration = self.settings['injection_duration']
tx_volt = float(tx_volt)
# inner variable initialization
sum_i = 0
sum_vmn = 0
sum_ps = 0
# let's define the pin again as if we run through measure()
# as it's run in another thread, it doesn't consider these
# and this can lead to short circuit!
self.pin0 = self.mcp_board.get_pin(0)
self.pin0.direction = Direction.OUTPUT
self.pin0.value = False
self.pin1 = self.mcp_board.get_pin(1)
self.pin1.direction = Direction.OUTPUT
self.pin1.value = False
self.pin7 = self.mcp_board.get_pin(7) # IHM on mesaurement
self.pin7.direction = Direction.OUTPUT
self.pin7.value = False
if self.sequence is None:
if self.idps:
# self.switch_dps('on')
self.pin2 = self.mcp_board.get_pin(2) # dsp +
self.pin2.direction = Direction.OUTPUT
self.pin2.value = True
self.pin3 = self.mcp_board.get_pin(3) # dsp -
self.pin3.direction = Direction.OUTPUT
self.pin3.value = True
time.sleep(4)
self.pin5 = self.mcp_board.get_pin(5) # IHM on mesaurement
self.pin5.direction = Direction.OUTPUT
self.pin5.value = True
self.pin6 = self.mcp_board.get_pin(6) # IHM on mesaurement
self.pin6.direction = Direction.OUTPUT
self.pin6.value = False
self.pin7 = self.mcp_board.get_pin(7) # IHM on mesaurement
self.pin7.direction = Direction.OUTPUT
self.pin7.value = False
if self.idps:
if self.DPS.read_register(0x05, 2) < 11:
self.pin7.value = True # max current allowed (100 mA for relays) #voltage
# get best voltage to inject AND polarity
if self.idps:
tx_volt, polarity, Rab = self._compute_tx_volt(
best_tx_injtime=best_tx_injtime, strategy=strategy, tx_volt=tx_volt, autogain=autogain)
self.exec_logger.debug(f'Best vab found is {tx_volt:.3f}V')
else:
polarity = 1
Rab = None
# first reset the gain to 2/3 before trying to find best gain (mode 0 is continuous)
self.ads_current = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860,
address=self.ads_current_address, mode=0)
self.ads_voltage = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860,
address=self.ads_voltage_address, mode=0)
# turn on the power supply
start_delay = None
end_delay = None
out_of_range = False
if self.idps:
if not np.isnan(tx_volt):
self.DPS.write_register(0x0000, tx_volt, 2) # set tx voltage in V
self.DPS.write_register(0x09, 1) # DPS5005 on
time.sleep(0.3)
else:
self.exec_logger.debug('No best voltage found, will not take measurement')
out_of_range = True
if not out_of_range: # we found a Vab in the range so we measure
gain = 2 / 3
self.ads_voltage = ads.ADS1115(self.i2c, gain=gain, data_rate=860,
address=self.ads_voltage_address, mode=0)
if autogain:
# compute autogain
gain_voltage = []
for n in [0, 1]: # make short cycle for gain computation
if n == 0:
self.pin0.value = True
self.pin1.value = False
if self.board_version == 'mb.2023.0.0':
self.pin6.value = True # IHM current injection led on
else:
self.pin0.value = False
self.pin1.value = True # current injection nr2
if self.board_version == 'mb.2023.0.0':
self.pin6.value = True # IHM current injection led on
time.sleep(injection_duration)
gain_current = self._gain_auto(AnalogIn(self.ads_current, ads.P0))
if polarity > 0:
if n == 0:
gain_voltage.append(self._gain_auto(AnalogIn(self.ads_voltage, ads.P0)))
else:
gain_voltage.append(self._gain_auto(AnalogIn(self.ads_voltage, ads.P2)))
else:
if n == 0:
gain_voltage.append(self._gain_auto(AnalogIn(self.ads_voltage, ads.P2)))
else:
gain_voltage.append(self._gain_auto(AnalogIn(self.ads_voltage, ads.P0)))
self.pin0.value = False
self.pin1.value = False
time.sleep(injection_duration)
if n == 0:
gain_voltage.append(self._gain_auto(AnalogIn(self.ads_voltage, ads.P0)))
else:
gain_voltage.append(self._gain_auto(AnalogIn(self.ads_voltage, ads.P2)))
if self.board_version == 'mb.2023.0.0':
self.pin6.value = False # IHM current injection led off
gain = np.min(gain_voltage)
self.exec_logger.debug(
f'Gain current: {gain_current:.3f}, gain voltage: {gain_voltage[0]:.3f}, '
f'{gain_voltage[1]:.3f}')
self.ads_current = ads.ADS1115(self.i2c, gain=gain_current, data_rate=860,
address=self.ads_current_address, mode=0)
self.pin0.value = False
self.pin1.value = False
# one stack = 2 half-cycles (one positive, one negative)
pinMN = 0 if polarity > 0 else 2 # noqa
# sampling for each stack at the end of the injection
sampling_interval = 10 # ms # TODO: make this a config option
self.nb_samples = int(
injection_duration * 1000 // sampling_interval) + 1 # TODO: check this strategy
# full data for waveform
fulldata = []
# we sample every 10 ms (as using AnalogIn for both current
# and voltage takes about 7 ms). When we go over the injection
# duration, we break the loop and truncate the meas arrays
# only the last values in meas will be taken into account
start_time = time.time() # start counter
for n in range(0, nb_stack * 2): # for each half-cycles
# current injection
if (n % 2) == 0:
self.pin0.value = True
self.pin1.value = False
if autogain: # select gain computed on first half cycle
self.ads_voltage = ads.ADS1115(self.i2c, gain=(gain_voltage[0]), data_rate=860,
address=self.ads_voltage_address, mode=0)
else:
self.pin0.value = False
self.pin1.value = True # current injection nr2
if autogain: # select gain computed on first half cycle
self.ads_voltage = ads.ADS1115(self.i2c, gain=(gain_voltage[1]), data_rate=860,
address=self.ads_voltage_address, mode=0)
self.exec_logger.debug(f'Stack {n} {self.pin0.value} {self.pin1.value}')
if self.board_version == 'mb.2023.0.0':
self.pin6.value = True # IHM current injection led on
# measurement of current i and voltage u during injection
meas = np.zeros((self.nb_samples, 5)) * np.nan
start_delay = time.time() # stating measurement time
dt = 0
k = 0
for k in range(0, self.nb_samples):
# reading current value on ADS channels
meas[k, 0] = (AnalogIn(self.ads_current, ads.P0).voltage * 1000) / (50 * self.r_shunt)
if self.board_version == 'mb.2023.0.0':
if pinMN == 0:
meas[k, 1] = AnalogIn(self.ads_voltage, ads.P0).voltage * 1000.
meas[k, 3] = meas[k, 1]
meas[k, 4] = AnalogIn(self.ads_voltage, ads.P2).voltage * 1000. * -1.0
else:
meas[k, 1] = AnalogIn(self.ads_voltage, ads.P2).voltage * 1000. * -1.0
meas[k, 4] = meas[k, 1]
meas[k, 3] = AnalogIn(self.ads_voltage, ads.P0).voltage * 1000.
elif self.board_version == '22.10':
meas[k, 1] = -AnalogIn(self.ads_voltage, ads.P0, ads.P1).voltage * self.coef_p2 * 1000
# else:
# self.exec_logger.debug('Unknown board')
time.sleep(sampling_interval / 1000)
dt = time.time() - start_delay # real injection time (s)
meas[k, 2] = time.time() - start_time
if dt > (injection_duration - 0 * sampling_interval / 1000.):
break
# stop current injection
self.pin0.value = False
self.pin1.value = False
self.pin6.value = False # IHM current injection led on
end_delay = time.time()
# truncate the meas array if we didn't fill the last samples #TODO: check why
meas = meas[:k + 1]
# measurement of current i and voltage u during off time
print(duty_cycle)
measpp = np.zeros((int(meas.shape[0]*(1/duty_cycle-1)), 5)) * np.nan
print(measpp.shape)
time.sleep(sampling_interval / 1000)
start_delay_off = time.time() # stating measurement time
dt = 0
for k in range(0, measpp.shape[0]):
# reading current value on ADS channels
measpp[k, 0] = (AnalogIn(self.ads_current, ads.P0).voltage * 1000.) / (50 * self.r_shunt)
if self.board_version == 'mb.2023.0.0':
#print('crenau %i sample %i'%(n,k))
if pinMN == 0:
measpp[k, 1] = AnalogIn(self.ads_voltage, ads.P0).voltage * 1000.
measpp[k, 3] = measpp[k, 1]
measpp[k, 4] = AnalogIn(self.ads_voltage, ads.P2).voltage * 1000. * -1.0
else:
measpp[k, 3] = AnalogIn(self.ads_voltage, ads.P0).voltage * 1000.
measpp[k, 1] = AnalogIn(self.ads_voltage, ads.P2).voltage * 1000. * -1.0
measpp[k, 4] = measpp[k, 1]
elif self.board_version == '22.10':
measpp[k, 1] = -AnalogIn(self.ads_voltage, ads.P0,
ads.P1).voltage * self.coef_p2 * 1000.
else:
self.exec_logger.debug('unknown board')
time.sleep(sampling_interval / 1000)
dt = time.time() - start_delay_off # real injection time (s)
measpp[k, 2] = time.time() - start_time
if dt > (injection_duration - 0 * sampling_interval / 1000.):
break
end_delay_off = time.time()
# truncate the meas array if we didn't fill the last samples
measpp = measpp[:k + 1]
# we alternate on which ADS1115 pin we measure because of sign of voltage
if pinMN == 0:
pinMN = 2 # noqa
else:
pinMN = 0 # noqa
# store data for full wave form
fulldata.append(meas)
fulldata.append(measpp)
# TODO get battery voltage and warn if battery is running low
# TODO send a message on SOH stating the battery level
# let's do some calculation (out of the stacking loop)
# i_stack = np.empty(2 * nb_stack, dtype=object)
# vmn_stack = np.empty(2 * nb_stack, dtype=object)
i_stack, vmn_stack = [], []
# select appropriate window length to average the readings
window = int(np.min([f.shape[0] for f in fulldata[::2]]) // 3)
for n, meas in enumerate(fulldata[::2]):
# take average from the samples per stack, then sum them all
# average for the last third of the stacked values
# is done outside the loop
i_stack.append(meas[-int(window):, 0])
vmn_stack.append(meas[-int(window):, 1])
sum_i = sum_i + (np.mean(meas[-int(meas.shape[0] // 3):, 0]))
vmn1 = np.mean(meas[-int(meas.shape[0] // 3), 1])
if (n % 2) == 0:
sum_vmn = sum_vmn - vmn1
sum_ps = sum_ps + vmn1
else:
sum_vmn = sum_vmn + vmn1
sum_ps = sum_ps + vmn1
else:
sum_i = np.nan
sum_vmn = np.nan
sum_ps = np.nan
fulldata = None
if self.idps:
self.DPS.write_register(0x0000, 0, 2) # reset to 0 volt
self.DPS.write_register(0x09, 0) # DPS5005 off
# reshape full data to an array of good size
# we need an array of regular size to save in the csv
if not out_of_range:
fulldata = np.vstack(fulldata)
# we create a big enough array given nb_samples, number of
# half-cycles (1 stack = 2 half-cycles), and twice as we
# measure decay as well
a = np.zeros((nb_stack * self.nb_samples * 2 * 2, 5)) * np.nan
a[:fulldata.shape[0], :] = fulldata
fulldata = a
else:
np.array([[]])
vmn_stack_mean = np.mean(
[np.diff(np.mean(vmn_stack[i * 2:i * 2 + 2], axis=1)) / 2 for i in range(nb_stack)])
vmn_std = np.sqrt(np.std(vmn_stack[::2]) ** 2 + np.std(
vmn_stack[1::2]) ** 2) # np.sum([np.std(vmn_stack[::2]),np.std(vmn_stack[1::2])])
i_stack_mean = np.mean(i_stack)
i_std = np.mean(np.array([np.std(i_stack[::2]), np.std(i_stack[1::2])]))
r_stack_mean = vmn_stack_mean / i_stack_mean
r_stack_std = np.sqrt((vmn_std / vmn_stack_mean) ** 2 + (i_std / i_stack_mean) ** 2) * r_stack_mean
ps_stack_mean = np.mean(
np.array([np.mean(np.mean(vmn_stack[i * 2:i * 2 + 2], axis=1)) for i in range(nb_stack)]))
# create a dictionary and compute averaged values from all stacks
# if self.board_version == 'mb.2023.0.0':
d = {
"time": datetime.now().isoformat(),
"A": quad[0],
"B": quad[1],
"M": quad[2],
"N": quad[3],
"inj time [ms]": (end_delay - start_delay) * 1000. if not out_of_range else 0.,
"Vmn [mV]": sum_vmn / (2 * nb_stack),
"I [mA]": sum_i / (2 * nb_stack),
"R [ohm]": sum_vmn / sum_i,
"Ps [mV]": sum_ps / (2 * nb_stack),
"nbStack": nb_stack,
"Tx [V]": tx_volt if not out_of_range else 0.,
"CPU temp [degC]": CPUTemperature().temperature,
"Nb samples [-]": self.nb_samples,
"fulldata": fulldata,
"I_stack [mA]": i_stack_mean,
"I_std [mA]": i_std,
"I_per_stack [mA]": np.array([np.mean(i_stack[i * 2:i * 2 + 2]) for i in range(nb_stack)]),
"Vmn_stack [mV]": vmn_stack_mean,
"Vmn_std [mV]": vmn_std,
"Vmn_per_stack [mV]": np.array(
[np.diff(np.mean(vmn_stack[i * 2:i * 2 + 2], axis=1))[0] / 2 for i in range(nb_stack)]),
"R_stack [ohm]": r_stack_mean,
"R_std [ohm]": r_stack_std,
"R_per_stack [Ohm]": np.mean(
[np.diff(np.mean(vmn_stack[i * 2:i * 2 + 2], axis=1)) / 2 for i in range(nb_stack)]) / np.array(
[np.mean(i_stack[i * 2:i * 2 + 2]) for i in range(nb_stack)]),
"PS_per_stack [mV]": np.array(
[np.mean(np.mean(vmn_stack[i * 2:i * 2 + 2], axis=1)) for i in range(nb_stack)]),
"PS_stack [mV]": ps_stack_mean,
"R_ab [ohm]": Rab,
"Gain_Vmn": gain
}
else: # for testing, generate random data
d = {'time': datetime.now().isoformat(), 'A': quad[0], 'B': quad[1], 'M': quad[2], 'N': quad[3],
'R [ohm]': np.abs(np.random.randn(1)).tolist()}
# to the data logger
dd = d.copy()
dd.pop('fulldata') # too much for logger
dd.update({'A': str(dd['A'])})
dd.update({'B': str(dd['B'])})
dd.update({'M': str(dd['M'])})
dd.update({'N': str(dd['N'])})
# round float to 2 decimal
for key in dd.keys():
if isinstance(dd[key], float):
dd[key] = np.round(dd[key], 3)
dd['cmd_id'] = str(cmd_id)
self.data_logger.info(dd)
self.pin5.value = False # IHM led on measurement off
if self.sequence is None:
self.switch_dps('off')
return d
def run_measurement_new(self, quad=None, nb_stack=None, injection_duration=None,
autogain=True, strategy='constant', tx_volt=5, best_tx_injtime=0.1, duty_cycle=0.5,
cmd_id=None):
"""Measures on a quadrupole and returns transfer resistance.
Parameters
----------
quad : iterable (list of int)
Quadrupole to measure, just for labelling. Only switch_mux_on/off
really create the route to the electrodes.
nb_stack : int, optional
Number of stacks. A stacl is considered two half-cycles (one
positive, one negative).
injection_duration : int, optional
Injection time in seconds.
autogain : bool, optional
If True, will adapt the gain of the ADS1115 to maximize the
resolution of the reading.
strategy : str, optional
(V3.0 only) If we search for best voltage (tx_volt == 0), we can choose
vmax strategy : find the highest voltage that stays in the range
For a constant value, just set the tx_volt.
tx_volt : float, optional
(V3.0 only) If specified, voltage will be imposed. If 0, we will look
for the best voltage. If the best Tx cannot be found, no
measurement will be taken and values will be NaN.
best_tx_injtime : float, optional
(V3.0 only) Injection time in seconds used for finding the best voltage.
duty_cycle : float, optional, default: 0.5
Ratio of time between injection duration and no injection duration during a half-cycle
It should be comprised between 0.5 (no injection duration same as injection duration) and 1 (no injection
duration equal to 0)
cmd_id : str, optional
Unique command identifier
"""
self.exec_logger.debug('Starting measurement')
self.exec_logger.debug('Waiting for data')
# check arguments
if quad is None:
quad = [0, 0, 0, 0]
if self.on_pi:
if nb_stack is None:
nb_stack = self.settings['nb_stack']
if injection_duration is None:
injection_duration = self.settings['injection_duration']
tx_volt = float(tx_volt)
# inner variable initialization
sum_i = 0
sum_vmn = 0
sum_ps = 0
# let's define the pin again as if we run through measure()
# as it's run in another thread, it doesn't consider these
# and this can lead to short circuit!
self.pin0 = self.mcp_board.get_pin(0)
self.pin0.direction = Direction.OUTPUT
self.pin0.value = False
self.pin1 = self.mcp_board.get_pin(1)
self.pin1.direction = Direction.OUTPUT
self.pin1.value = False
self.pin7 = self.mcp_board.get_pin(7) # IHM on mesaurement
self.pin7.direction = Direction.OUTPUT
self.pin7.value = False
if self.sequence is None:
if self.idps:
# self.switch_dps('on')
self.pin2 = self.mcp_board.get_pin(2) # dsp +
self.pin2.direction = Direction.OUTPUT
self.pin2.value = True
self.pin3 = self.mcp_board.get_pin(3) # dsp -
self.pin3.direction = Direction.OUTPUT
self.pin3.value = True
time.sleep(4)
self.pin5 = self.mcp_board.get_pin(5) # IHM on mesaurement
self.pin5.direction = Direction.OUTPUT
self.pin5.value = True
self.pin6 = self.mcp_board.get_pin(6) # IHM on mesaurement
self.pin6.direction = Direction.OUTPUT
self.pin6.value = False
self.pin7 = self.mcp_board.get_pin(7) # IHM on mesaurement
self.pin7.direction = Direction.OUTPUT
self.pin7.value = False
if self.idps:
if self.DPS.read_register(0x05, 2) < 11:
self.pin7.value = True # max current allowed (100 mA for relays) #voltage
# get best voltage to inject AND polarity
if self.idps:
tx_volt, polarity, Rab = self._compute_tx_volt(
best_tx_injtime=best_tx_injtime, strategy=strategy, tx_volt=tx_volt, autogain=autogain)
self.exec_logger.debug(f'Best vab found is {tx_volt:.3f}V')
else:
polarity = 1
Rab = None
# first reset the gain to 2/3 before trying to find best gain (mode 0 is continuous)
self.ads_current = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860,
address=self.ads_current_address, mode=0)
self.ads_voltage = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860,
address=self.ads_voltage_address, mode=0)
# turn on the power supply
start_delay = None
end_delay = None
out_of_range = False
if self.idps:
if not np.isnan(tx_volt):
self.DPS.write_register(0x0000, tx_volt, 2) # set tx voltage in V
self.DPS.write_register(0x09, 1) # DPS5005 on
time.sleep(0.3)
else:
self.exec_logger.debug('No best voltage found, will not take measurement')
out_of_range = True
if not out_of_range: # we found a Vab in the range so we measure
gain = 2 / 3
self.ads_voltage = ads.ADS1115(self.i2c, gain=gain, data_rate=860,
address=self.ads_voltage_address, mode=0)
if autogain:
# compute autogain
gain_voltage = []
for n in [0, 1]: # make short cycle for gain computation
if n == 0:
self.pin0.value = True
self.pin1.value = False
if self.board_version == 'mb.2023.0.0':
self.pin6.value = True # IHM current injection led on
else:
self.pin0.value = False
self.pin1.value = True # current injection nr2
if self.board_version == 'mb.2023.0.0':
self.pin6.value = True # IHM current injection led on
time.sleep(best_tx_injtime)
gain_current = self._gain_auto(AnalogIn(self.ads_current, ads.P0))
gain_voltage.append(self._gain_auto(AnalogIn(self.ads_voltage, ads.P0)))
gain_voltage.append(self._gain_auto(AnalogIn(self.ads_voltage, ads.P2)))
# if polarity > 0:
# if n == 0:
# gain_voltage.append(self._gain_auto(AnalogIn(self.ads_voltage, ads.P0)))
# else:
# gain_voltage.append(self._gain_auto(AnalogIn(self.ads_voltage, ads.P2)))
# else:
# if n == 0:
# gain_voltage.append(self._gain_auto(AnalogIn(self.ads_voltage, ads.P2)))
# else:
# gain_voltage.append(self._gain_auto(AnalogIn(self.ads_voltage, ads.P0)))
self.pin0.value = False
self.pin1.value = False
time.sleep(best_tx_injtime)
# if n == 0:
# gain_voltage.append(self._gain_auto(AnalogIn(self.ads_voltage, ads.P0)))
# else:
# gain_voltage.append(self._gain_auto(AnalogIn(self.ads_voltage, ads.P2)))
if self.board_version == 'mb.2023.0.0':
self.pin6.value = False # IHM current injection led off
gain = np.min(gain_voltage)
self.exec_logger.debug(f'Gain current: {gain_current:.3f}, gain voltage: {gain_voltage[0]:.3f}, '
f'{gain_voltage[1]:.3f}')
self.ads_current = ads.ADS1115(self.i2c, gain=gain_current, data_rate=860,
address=self.ads_current_address, mode=0)
self.pin0.value = False
self.pin1.value = False
# one stack = 2 half-cycles (one positive, one negative)
pinMN = 0 if polarity > 0 else 2 # noqa
# sampling for each stack at the end of the injection
sampling_interval = 10 # ms # TODO: make this a config option
self.nb_samples = int(injection_duration * 1000 // sampling_interval) + 1 # TODO: check this strategy
# full data for waveform
fulldata = []
# we sample every 10 ms (as using AnalogIn for both current
# and voltage takes about 7 ms). When we go over the injection
# duration, we break the loop and truncate the meas arrays
# only the last values in meas will be taken into account
start_time = time.time() # start counter
for n in range(0, nb_stack * 2): # for each half-cycles
# current injection
if (n % 2) == 0:
self.pin0.value = True
self.pin1.value = False
if autogain: # select gain computed on first half cycle
self.ads_voltage = ads.ADS1115(self.i2c, gain=np.min(gain_voltage), data_rate=860,
address=self.ads_voltage_address, mode=0)
else:
self.pin0.value = False
self.pin1.value = True # current injection nr2
if autogain: # select gain computed on first half cycle
self.ads_voltage = ads.ADS1115(self.i2c, gain=np.min(gain_voltage), data_rate=860,
address=self.ads_voltage_address, mode=0)
self.exec_logger.debug(f'Stack {n} {self.pin0.value} {self.pin1.value}')
if self.board_version == 'mb.2023.0.0':
self.pin6.value = True # IHM current injection led on
# measurement of current i and voltage u during injection
meas = np.zeros((self.nb_samples, 5)) * np.nan
start_delay = time.time() # stating measurement time
dt = 0
k = 0
for k in range(0, self.nb_samples):
# reading current value on ADS channels
meas[k, 0] = (AnalogIn(self.ads_current, ads.P0).voltage * 1000) / (50 * self.r_shunt)
if self.board_version == 'mb.2023.0.0':
# if pinMN == 0:
# meas[k, 1] = AnalogIn(self.ads_voltage, ads.P0).voltage * 1000.
# meas[k, 3] = meas[k, 1]
# meas[k, 4] = AnalogIn(self.ads_voltage, ads.P2).voltage * 1000. * -1.0
# else:
# meas[k, 1] = AnalogIn(self.ads_voltage, ads.P2).voltage * 1000. * -1.0
# meas[k, 4] = meas[k, 1]
# meas[k, 3] = AnalogIn(self.ads_voltage, ads.P0).voltage * 1000.
u0 = AnalogIn(self.ads_voltage, ads.P0).voltage * 1000.
u2 = AnalogIn(self.ads_voltage, ads.P2).voltage * 1000.
u = np.max([u0, u2]) * (np.heaviside(u0 - u2, 1.) * 2 - 1.)
meas[k, 1] = u
meas[k, 3] = u0
meas[k, 4] = u2 *-1.0
elif self.board_version == '22.10':
meas[k, 1] = -AnalogIn(self.ads_voltage, ads.P0, ads.P1).voltage * self.coef_p2 * 1000
# else:
# self.exec_logger.debug('Unknown board')
time.sleep(sampling_interval / 1000)
dt = time.time() - start_delay # real injection time (s)
meas[k, 2] = time.time() - start_time
if dt > (injection_duration - 0 * sampling_interval / 1000.):
break
# stop current injection
self.pin0.value = False
self.pin1.value = False
if self.board_version == 'mb.2023.0.0':
self.pin6.value = False # IHM current injection led on
end_delay = time.time()
# truncate the meas array if we didn't fill the last samples #TODO: check why
meas = meas[:k + 1]
# measurement of current i and voltage u during off time
measpp = np.zeros((int(meas.shape[0] * (1 / duty_cycle - 1)), 5)) * np.nan
time.sleep(sampling_interval / 1000)
start_delay_off = time.time() # stating measurement time
dt = 0
for k in range(0, measpp.shape[0]):
# reading current value on ADS channels
measpp[k, 0] = (AnalogIn(self.ads_current, ads.P0).voltage * 1000.) / (50 * self.r_shunt)
if self.board_version == 'mb.2023.0.0':
# if pinMN == 0:
# measpp[k, 1] = AnalogIn(self.ads_voltage, ads.P0).voltage * 1000.
# measpp[k, 3] = measpp[k, 1]
# measpp[k, 4] = AnalogIn(self.ads_voltage, ads.P2).voltage * 1000. * -1.0
# else:
# measpp[k, 3] = AnalogIn(self.ads_voltage, ads.P0).voltage * 1000.
# measpp[k, 1] = AnalogIn(self.ads_voltage, ads.P2).voltage * 1000. * -1.0
# measpp[k, 4] = measpp[k, 1]
u0 = AnalogIn(self.ads_voltage, ads.P0).voltage * 1000.
u2 = AnalogIn(self.ads_voltage, ads.P2).voltage * 1000.
u = np.max([u0, u2]) * (np.heaviside(u0 - u2, 1.) * 2 - 1.)
measpp[k, 1] = u
measpp[k, 3] = u0
measpp[k, 4] = u2*-1.0
elif self.board_version == '22.10':
measpp[k, 1] = -AnalogIn(self.ads_voltage, ads.P0, ads.P1).voltage * self.coef_p2 * 1000.
else:
self.exec_logger.debug('unknown board')
time.sleep(sampling_interval / 1000)
dt = time.time() - start_delay_off # real injection time (s)
measpp[k, 2] = time.time() - start_time
if dt > (injection_duration - 0 * sampling_interval / 1000.):
break
end_delay_off = time.time()
# truncate the meas array if we didn't fill the last samples
measpp = measpp[:k + 1]
# we alternate on which ADS1115 pin we measure because of sign of voltage
if pinMN == 0:
pinMN = 2 # noqa
else:
pinMN = 0 # noqa
# store data for full wave form
fulldata.append(meas)
fulldata.append(measpp)
# TODO get battery voltage and warn if battery is running low
# TODO send a message on SOH stating the battery level
# let's do some calculation (out of the stacking loop)
# i_stack = np.empty(2 * nb_stack, dtype=object)
# vmn_stack = np.empty(2 * nb_stack, dtype=object)
i_stack, vmn_stack = [], []
# select appropriate window length to average the readings
window = int(np.min([f.shape[0] for f in fulldata[::2]]) // 3)
for n, meas in enumerate(fulldata[::2]):
# take average from the samples per stack, then sum them all
# average for the last third of the stacked values
# is done outside the loop
i_stack.append(meas[-int(window):, 0])
vmn_stack.append(meas[-int(window):, 1])
sum_i = sum_i + (np.mean(meas[-int(meas.shape[0] // 3):, 0]))
vmn1 = np.mean(meas[-int(meas.shape[0] // 3), 1])
if (n % 2) == 0:
sum_vmn = sum_vmn - vmn1
sum_ps = sum_ps + vmn1
else:
sum_vmn = sum_vmn + vmn1
sum_ps = sum_ps + vmn1
else:
sum_i = np.nan
sum_vmn = np.nan
sum_ps = np.nan
fulldata = None
if self.idps:
self.DPS.write_register(0x0000, 0, 2) # reset to 0 volt
self.DPS.write_register(0x09, 0) # DPS5005 off
# reshape full data to an array of good size
# we need an array of regular size to save in the csv
if not out_of_range:
fulldata = np.vstack(fulldata)
# we create a big enough array given nb_samples, number of
# half-cycles (1 stack = 2 half-cycles), and twice as we
# measure decay as well
a = np.zeros((nb_stack * self.nb_samples * 2 * 2, 5)) * np.nan
a[:fulldata.shape[0], :] = fulldata
fulldata = a
else:
np.array([[]])
vmn_stack_mean = np.mean(
[np.diff(np.mean(vmn_stack[i * 2:i * 2 + 2], axis=1)) / 2 for i in range(nb_stack)])
vmn_std = np.sqrt(np.std(vmn_stack[::2]) ** 2 + np.std(
vmn_stack[1::2]) ** 2) # np.sum([np.std(vmn_stack[::2]),np.std(vmn_stack[1::2])])
i_stack_mean = np.mean(i_stack)
i_std = np.mean(np.array([np.std(i_stack[::2]), np.std(i_stack[1::2])]))
r_stack_mean = vmn_stack_mean / i_stack_mean
r_stack_std = np.sqrt((vmn_std / vmn_stack_mean) ** 2 + (i_std / i_stack_mean) ** 2) * r_stack_mean
ps_stack_mean = np.mean(
np.array([np.mean(np.mean(vmn_stack[i * 2:i * 2 + 2], axis=1)) for i in range(nb_stack)]))
# create a dictionary and compute averaged values from all stacks
# if self.board_version == 'mb.2023.0.0':
d = {
"time": datetime.now().isoformat(),
"A": quad[0],
"B": quad[1],
"M": quad[2],
"N": quad[3],
"inj time [ms]": (end_delay - start_delay) * 1000. if not out_of_range else 0.,
"Vmn [mV]": sum_vmn / (2 * nb_stack),
"I [mA]": sum_i / (2 * nb_stack),
"R [ohm]": sum_vmn / sum_i,
"Ps [mV]": sum_ps / (2 * nb_stack),
"nbStack": nb_stack,
"Tx [V]": tx_volt if not out_of_range else 0.,
"CPU temp [degC]": CPUTemperature().temperature,
"Nb samples [-]": self.nb_samples,
"fulldata": fulldata,
"I_stack [mA]": i_stack_mean,
"I_std [mA]": i_std,
"I_per_stack [mA]": np.array([np.mean(i_stack[i * 2:i * 2 + 2]) for i in range(nb_stack)]),
"Vmn_stack [mV]": vmn_stack_mean,
"Vmn_std [mV]": vmn_std,
"Vmn_per_stack [mV]": np.array(
[np.diff(np.mean(vmn_stack[i * 2:i * 2 + 2], axis=1))[0] / 2 for i in range(nb_stack)]),
"R_stack [ohm]": r_stack_mean,
"R_std [ohm]": r_stack_std,
"R_per_stack [ohm]": np.mean(
[np.diff(np.mean(vmn_stack[i * 2:i * 2 + 2], axis=1)) / 2 for i in range(nb_stack)]) / np.array(
[np.mean(i_stack[i * 2:i * 2 + 2]) for i in range(nb_stack)]),
"PS_per_stack [mV]": np.array(
[np.mean(np.mean(vmn_stack[i * 2:i * 2 + 2], axis=1)) for i in range(nb_stack)]),
"PS_stack [mV]": ps_stack_mean,
"R_ab [ohm]": Rab,
"Gain_Vmn": gain
}
# print(np.array([(vmn_stack[i*2:i*2+2]) for i in range(nb_stack)]))
# elif self.board_version == '22.10':
# d = {
# "time": datetime.now().isoformat(),
# "A": quad[0],
# "B": quad[1],
# "M": quad[2],
# "N": quad[3],
# "inj time [ms]": (end_delay - start_delay) * 1000. if not out_of_range else 0.,
# "Vmn [mV]": sum_vmn / (2 * nb_stack),
# "I [mA]": sum_i / (2 * nb_stack),
# "R [ohm]": sum_vmn / sum_i,
# "Ps [mV]": sum_ps / (2 * nb_stack),
# "nbStack": nb_stack,
# "Tx [V]": tx_volt if not out_of_range else 0.,
# "CPU temp [degC]": CPUTemperature().temperature,
# "Nb samples [-]": self.nb_samples,
# "fulldata": fulldata,
# }
else: # for testing, generate random data
d = {'time': datetime.now().isoformat(), 'A': quad[0], 'B': quad[1], 'M': quad[2], 'N': quad[3],
'R [ohm]': np.abs(np.random.randn(1)).tolist()}
# to the data logger
dd = d.copy()
dd.pop('fulldata') # too much for logger
dd.update({'A': str(dd['A'])})
dd.update({'B': str(dd['B'])})
dd.update({'M': str(dd['M'])})
dd.update({'N': str(dd['N'])})
# round float to 2 decimal
for key in dd.keys():
if isinstance(dd[key], float):
dd[key] = np.round(dd[key], 3)
dd['cmd_id'] = str(cmd_id)
self.data_logger.info(dd)
self.pin5.value = False # IHM led on measurement off
if self.sequence is None:
self.switch_dps('off')
return d