An error occurred while loading the file. Please try again.
-
remi.clement authoreda0362f3d
############################################ FUNCTION TO EXTRACT DECTED OUTLIER AND FORMAT TRY DATA Georges Kunstler
############################################ 14/06/2013
library(MASS, quietly=TRUE)
library(doParallel, quietly=TRUE)
library(mvoutlier, quietly=TRUE)
######################################################## Build a function that extract the variables
##'Description of the function to extract data from original TRY data
##'
##' based on the data structure of extraction from TRY data base
##' @title fun.extract.try
##' @param ObservationID.t list of data identifier that we want to extract
##' @param data try data object
##' @param Non.Trait.Data list of names of non traits data that we want to extract
##' @param Trait.Data list of names of traits data that we want to extract
##' @return data.frame with one line per observation id with clumns with ObservationID Species Nontrait data for Traits: OrigValue OrigUnit StdValue
##' @author Kunstler
fun.extract.try <- function(ObservationID.t, data, Non.Trait.Data, Trait.Data) {
data.temp <- data[data$ObservationID == ObservationID.t, ]
## Non trait data
Vec.Non.Trait.Data <- rep(NA, length(Non.Trait.Data))
names(Vec.Non.Trait.Data) <- Non.Trait.Data
for (i in 1:length(Non.Trait.Data)) {
if (sum(data.temp$DataName == Non.Trait.Data[i]) == 1) {
Vec.Non.Trait.Data[i] <- data.temp[data.temp$DataName == Non.Trait.Data[i],
"OrigValueStr"]
}
if (sum(data.temp$DataName == Non.Trait.Data[i]) > 1) {
## if(sum(data.temp$DataName==Non.Trait.Data[i] &
## grepl('Mean',data.temp$ValueKindName, fixed=TRUE))!=1){ print('error in
## ValueKindName')}
Vec.Non.Trait.Data[i] <- data.temp[data.temp$DataName == Non.Trait.Data[i],
"OrigValueStr"][1]
}
}
## Trait data
Vec.Trait.Data.OrigValue <- Vec.Trait.Data.OrigUnit <- Vec.Trait.Data.StdValue <- rep(NA,
length(Trait.Data))
names(Vec.Trait.Data.OrigValue) <- paste("OrigValue", Trait.Data)
names(Vec.Trait.Data.OrigUnit) <- paste("OrigUnitName", Trait.Data)
names(Vec.Trait.Data.StdValue) <- paste("StdValue", Trait.Data)
for (i in 1:length(Trait.Data)) {
if (sum(grepl(Trait.Data[i], data.temp$TraitName, fixed = TRUE)) == 1) {
Vec.Trait.Data.OrigValue[i] <- data.temp[grepl(Trait.Data[i], data.temp$TraitName,
fixed = TRUE), "OrigValue"]
Vec.Trait.Data.OrigUnit[i] <- data.temp[grepl(Trait.Data[i], data.temp$TraitName,
fixed = TRUE), "OrigUnitStr"]
Vec.Trait.Data.StdValue[i] <- data.temp[grepl(Trait.Data[i], data.temp$TraitName,
fixed = TRUE), "StdValue"]
}
if (sum(grepl(Trait.Data[i], data.temp$TraitName, fixed = TRUE)) > 1) {
if (sum((data.temp$ValueKindName %in% c("Best estimate", "Mean", "Site specific mean") &
!is.na(data.temp$ValueKindName))) == 1) {
Vec.Trait.Data.OrigValue[i] <- mean(data.temp[grepl(Trait.Data[i],
data.temp$TraitName, fixed = TRUE) & (data.temp$ValueKindName %in%
c("Best estimate", "Mean", "Site specific mean") & !is.na(data.temp$ValueKindName)),
"OrigValue"])
Vec.Trait.Data.OrigUnit[i] <- (data.temp[grepl(Trait.Data[i], data.temp$TraitName,
fixed = TRUE) & (data.temp$ValueKindName %in% c("Best estimate",
"Mean", "Site specific mean") & !is.na(data.temp$ValueKindName)),
"OrigUnitStr"])[1]
Vec.Trait.Data.StdValue[i] <- mean(data.temp[grepl(Trait.Data[i],
data.temp$TraitName, fixed = TRUE) & (data.temp$ValueKindName %in%
c("Best estimate", "Mean", "Site specific mean") & !is.na(data.temp$ValueKindName)),
7172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
"StdValue"])
}
if (sum(data.temp$ValueKindName %in% c("Best estimate", "Mean", "Site specific mean")) <
1) {
Vec.Trait.Data.OrigValue[i] <- mean(data.temp[grepl(Trait.Data[i],
data.temp$TraitName, fixed = TRUE), "OrigValue"], na.rm = T)
Vec.Trait.Data.OrigUnit[i] <- (data.temp[grepl(Trait.Data[i], data.temp$TraitName,
fixed = TRUE), "OrigUnitStr"])[1]
Vec.Trait.Data.StdValue[i] <- mean(data.temp[grepl(Trait.Data[i],
data.temp$TraitName, fixed = TRUE), "StdValue"], na.rm = T)
}
}
}
### EXPERIMENTAL DATA TYPE
TF.exp.data <- sum(grepl("Growth & measurement conditions - experimental tre",
data.temp$NonTraitCategories, fixed = TRUE)) > 0
names(TF.exp.data) <- "TF.exp.data"
res.temp <- data.frame(ObservationID = ObservationID.t, AccSpeciesName = unique(data.temp$AccSpeciesName),
t(Vec.Non.Trait.Data), TF.exp.data, t(Vec.Trait.Data.OrigValue), t(Vec.Trait.Data.OrigUnit),
t(Vec.Trait.Data.StdValue))
return(res.temp)
}
## outlier detection based on Kattage et al 2011
##' Detection of univar outlier based on method of Kattge et al. 2011
##'
##'
##' @title
##' @param x.na
##' @param log
##' @return TRUE FALSE vector to identify outlier TRUE : outlier
##' @author Kunstler
fun.out.TF2 <- function(x.na, log = TRUE) {
x <- x.na[!is.na(x.na)]
x.num <- (1:length(x.na))[!is.na(x.na)]
TF.vec <- rep(FALSE, length(x.na))
if (log) {
fit.dist <- fitdistr(log10(na.omit(x)), "normal")
high.bound <- fit.dist$estimate["mean"] + 2 * (fit.dist$estimate["sd"] +
fit.dist$sd["sd"])
low.bound <- fit.dist$estimate["mean"] - 2 * (fit.dist$estimate["sd"] + fit.dist$sd["sd"])
TF.vec[x.num[log10(x) > high.bound | log10(x) < low.bound]] <- TRUE
} else {
fit.dist <- fitdistr((na.omit(x)), "normal")
high.bound <- fit.dist$estimate["mean"] + 2 * (fit.dist$estimate["sd"] +
fit.dist$sd["sd"])
low.bound <- fit.dist$estimate["mean"] - 2 * (fit.dist$estimate["sd"] + fit.dist$sd["sd"])
TF.vec[x.num[(x) > high.bound | (x) < low.bound]] <- TRUE
}
return((TF.vec))
}
######################## FUNCTION TO COMPUTE QUANTILE FOR HEIGHT
f.quantile <- function(x, ind, probs) {
quantile(x[ind], probs = probs, na.rm = TRUE)
}
f.quantile.boot2 <- function(x, R, probs = 0.99) {
require(boot, quietly=TRUE)
if (length(na.exclude(x)) > 0) {
quant.boot <- boot(x, f.quantile, R = R, probs = probs)
return(c(mean = mean(quant.boot$t), sd = sd(quant.boot$t), nobs = length(na.exclude(x))))
} else {
141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210
return(c(mean = NA, sd = NA, nobs = NA))
}
}
##################### FUNcCTION TO COMPUTE MEAN SD AND NOBS WITH OR WITHOUT OUTLIER
fun.mean.sd.nobs.out <- function(x, i) {
if (length(x) > 50) {
## if more than 50 obs remove outlier
outlier <- fun.out.TF2(x.na = x, log = TRUE)
if (i == "StdValue.Plant.height.vegetative") {
res.temp <- f.quantile.boot2(log10(x[!outlier]), R = 1000, probs = 0.99)
} else {
res.temp <- c(mean(log10(x[!outlier])), sd(log10(x[!outlier])), length(x[!outlier]))
}
} else {
if (i == "StdValue.Plant.height.vegetative") {
res.temp <- f.quantile.boot2(log10(x), R = 1000, probs = 0.99)
} else {
res.temp <- c(mean(log10(x)), sd(log10(x)), length(x))
}
}
return(res.temp)
}
################################### extract mean sd per species or genus added species synonyme
fun.species.traits <- function(species.code, species.table, col.sp = "sp", col.sp.syno = "Latin_name_syn",
traits, data) {
vec.mean <- vec.sd <- vec.nobs <- rep(NA, length(traits))
vec.exp <- vec.genus <- rep(FALSE, length(traits))
names(vec.mean) <- names(vec.sd) <- names(vec.exp) <- names(vec.genus) <- names(vec.nobs) <- traits
species.syno <- species.table[species.table[[col.sp]] == species.code, col.sp.syno]
# browser()
for (i in traits) {
if (sum((data$AccSpeciesName %in% species.syno) & !is.na(data[[i]])) > 0) {
## if data for this species or syno if data with out experiments
if (sum((data$AccSpeciesName %in% species.syno) & (!is.na(data[[i]])) &
(!data[["TF.exp.data"]])) > 0) {
x <- data[[i]][data$AccSpeciesName %in% species.syno & (!is.na(data[[i]])) &
(!data[["TF.exp.data"]])]
res.temp <- fun.mean.sd.nobs.out(x, i)
vec.mean[[i]] <- res.temp[1]
vec.sd[[i]] <- res.temp[2]
vec.nobs[[i]] <- res.temp[3]
} else {
### include experimental data
x <- data[[i]][data$AccSpeciesName %in% species.syno & (!is.na(data[[i]]))]
res.temp <- fun.mean.sd.nobs.out(x, i)
vec.mean[[i]] <- res.temp[1]
vec.sd[[i]] <- res.temp[2]
vec.nobs[[i]] <- res.temp[3]
vec.exp[[i]] <- TRUE
}
} else {
### compute data at genus level if no data for the species
genus <- sub(" .*", "", species.syno)
if (sum(grepl(genus, data$AccSpeciesName) & (!is.na(data[[i]]))) > 0) {
x <- data[[i]][grepl(genus, data$AccSpeciesName, fixed = TRUE) &
(!is.na(data[[i]]))]
res.temp <- fun.mean.sd.nobs.out(x, i)
vec.mean[[i]] <- res.temp[1]
vec.sd[[i]] <- res.temp[2]
vec.nobs[[i]] <- res.temp[3]
vec.genus[[i]] <- TRUE
}
}
}
return(list(mean = vec.mean, sd = vec.sd, exp = vec.exp, genus = vec.genus, nobs = vec.nobs))
211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280
}
####################### FUNCTIONS TO Manipulate species names
fun.get.genus <- function(x) gsub(paste(" ", gsub("^([a-zA-Z]* )", "", x), sep = ""),
"", x, fixed = TRUE)
trim.trailing <- function(x) sub("\\s+$", "", x)
####################################### FUN TO EXTRACT FOR A GIVEN DATA BASE
fun.turn.list.in.DF <- function(sp, res.list) {
data.mean <- t(sapply(sp, FUN = function(i, res.list) res.list[[i]]$mean, res.list = res.list))
data.sd <- t(sapply(sp, FUN = function(i, res.list) res.list[[i]]$sd, res.list = res.list))
data.exp <- t(sapply(sp, FUN = function(i, res.list) res.list[[i]]$exp, res.list = res.list))
data.genus <- t(sapply(sp, FUN = function(i, res.list) res.list[[i]]$genus, res.list = res.list))
data.nobs <- t(sapply(sp, FUN = function(i, res.list) res.list[[i]]$nobs, res.list = res.list))
## create data.frame withh all observation
extract.species.try <- data.frame(data.mean, data.sd, data.exp, data.genus, data.nobs)
names(extract.species.try) <- c(paste(c("Leaf.N", "Seed.mass", "SLA", "Wood.Density",
"Height"), "mean", sep = "."), paste(c("Leaf.N", "Seed.mass", "SLA", "Wood.Density",
"Height"), "sd", sep = "."), paste(c("Leaf.N", "Seed.mass", "SLA", "Wood.Density",
"Height"), "exp", sep = "."), paste(c("Leaf.N", "Seed.mass", "SLA", "Wood.Density",
"Height"), "genus", sep = "."), paste(c("Leaf.N", "Seed.mass", "SLA", "Wood.Density",
"Height"), "nobs", sep = "."))
return(extract.species.try)
}
fun.extract.format.sp.traits.TRY <- function(sp, sp.syno.table, data) {
## check syno data if not create a table with column syno repating the species
### test data sp and sp.syno.table match
if (sum(!(sp %in% sp.syno.table[["sp"]])) > 0)
stop("not same species name in sp and sp.syno.table")
if (sum((sp.syno.table[["Latin_name_syn"]] %in% data[["AccSpeciesName"]])) ==
0)
stop("not a single similar species name in sp and TRY")
## extract
traits <- c("StdValue.Leaf.nitrogen..N..content.per.dry.mass", "StdValue.Seed.mass",
"StdValue.Leaf.specific.area..SLA.", "StdValue.Stem.specific.density..SSD.",
"StdValue.Plant.height.vegetative")
res.list <- lapply(sp, FUN = fun.species.traits, species.table = sp.syno.table,
traits = traits, data = data)
names(res.list) <- sp
##### TRANSFORM LIST IN A TABLE
extract.species.try <- fun.turn.list.in.DF(sp, res.list)
############### add mean sd of species or genus if we want to use that
sd.vec.sp <- readRDS(file = "./data/process/sd.vec.sp.rds")
sd.vec.genus <- readRDS(file = "./data/process/sd.vec.genus.rds")
sd.names <- paste(c("Leaf.N", "Seed.mass", "SLA", "Wood.Density", "Height"),
"sd", sep = ".")
genus.names <- paste(c("Leaf.N", "Seed.mass", "SLA", "Wood.Density", "Height"),
"genus", sep = ".")
### add columns
extract.species.try.2 <- data.frame(extract.species.try, extract.species.try[,
sd.names])
## update value
sd.names.1 <- paste(sd.names, 1, sep = ".")
for (i in 1:length(sd.names.1)) {
extract.species.try.2[[sd.names.1[i]]][!extract.species.try.2[[genus.names[i]]]] <- sd.vec.sp[i]
extract.species.try.2[[sd.names.1[i]]][extract.species.try.2[[genus.names[i]]]] <- sd.vec.genus[i]
}
data.frame.TRY <- data.frame(sp = sp, Latin_name = sp.syno.table[["Latin_name_syn"]],
281282283284285286
extract.species.try.2)
if (sum(!data.frame.TRY[["sp"]] == sp) > 0)
stop("Wrong order of species code")
return(data.frame.TRY)
}