An error occurred while loading the file. Please try again.
-
Arnaud WATLET authored57a5779c
# \\\
# Copyright 2021-2022 Louis Héraut*1
#
# *1 INRAE, France
# louis.heraut@inrae.fr
#
# This file is part of ash R toolbox.
#
# ash R toolbox is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or (at
# your option) any later version.
#
# ash R toolbox is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with ash R toolbox. If not, see <https://www.gnu.org/licenses/>.
# ///
#
#
# processing/analyse.R
#
# File that realise all the possible analysis of data.
# This file regroup mainly the functions use to compute the trend
# analysis of hydrologic variables thanks to the Mann-Kendall Test.
# Functions needed for break or gap analysis are also present.
# Usefull library
library(dplyr)
library(zoo)
library(StatsAnalysisTrend)
library(lubridate)
library(trend)
# Sourcing R file
source('processing/format.R', encoding='latin1')
## 1. TREND ANALYSIS
### 1.0. Intercept of trend
# Compute intercept values of linear trends with first order values
# of trends and the data on which analysis is performed.
get_intercept = function (df_Xtrend, df_Xlist, unit2day=365.25) {
# Create a column in trend full of NA
df_Xtrend$intercept = NA
# For all different group
for (g in df_Xlist$info$group) {
# Get the data and trend value linked to this group
df_data_code = df_Xlist$data[df_Xlist$data$group == g,]
df_Xtrend_code = df_Xtrend[df_Xtrend$group == g,]
# Get the time start and end of the different periods
Start = df_Xtrend_code$period_start
End = df_Xtrend_code$period_end
# Extract only the unrepeated dates
UStart = levels(factor(Start))
UEnd = levels(factor(End))
# Get the number of different periods of trend analysis
nPeriod = max(length(UStart), length(UEnd))
# For each of these perdiods
for (i in 1:nPeriod) {
# Get data and trend associated to the period
df_data_code_per =
7172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
df_data_code[df_data_code$Date >= Start[i]
& df_data_code$Date <= End[i],]
df_Xtrend_code_per =
df_Xtrend_code[df_Xtrend_code$period_start == Start[i]
& df_Xtrend_code$period_end == End[i],]
# Get the group associated to this period
id = which(df_Xtrend$group == g
& df_Xtrend$period_start == Start[i]
& df_Xtrend$period_end == End[i])
# Compute mean of flow and time period
mu_X = mean(df_data_code_per$Qm3s, na.rm=TRUE)
mu_t = as.numeric(mean(c(Start[i],
End[i]),
na.rm=TRUE)) / unit2day
# Get the intercept of the trend
b = mu_X - mu_t * df_Xtrend_code_per$trend
# And store it
df_Xtrend$intercept[id] = b
}
}
return (df_Xtrend)
}
### 1.1. QA
# Realise the trend analysis of the average annual flow (QA)
# hydrological variable
get_QAtrend = function (df_data, period, p_thresold) {
# Make sure to convert the period to a list
period = as.list(period)
# Set the max interval period as the minimal possible
Imax = 0
# Blank tibble for data to return
df_QAtrendB = tibble()
# For all periods
for (per in period) {
# Prepare the data to fit the entry of extract.Var
df_QAlist = prepare(df_data, colnamegroup=c('code'))
# Compute the yearly mean over the data
df_QAEx = extract.Var(data.station=df_QAlist,
funct=mean,
timestep='year',
period=per,
pos.datetime=1,
na.rm=TRUE)
# Compute the trend analysis
df_QAtrend = Estimate.stats(data.extract=df_QAEx,
level=p_thresold)
# Get the associated time interval
I = interval(per[1], per[2])
# If it is the largest interval
if (I > Imax) {
# Store it and the associated data and info
Imax = I
df_QAlistB = df_QAlist
df_QAExB = df_QAEx
}
# Specify the period of analyse
df_QAtrend = get_period(per, df_QAtrend, df_QAEx, df_QAlist)
# Store the trend
df_QAtrendB = bind_rows(df_QAtrendB, df_QAtrend)
}
141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210
# Clean results of trend analyse
res_QAtrend = clean(df_QAtrendB, df_QAExB, df_QAlistB)
return (res_QAtrend)
}
### 1.2. QMNA
# Realise the trend analysis of the monthly minimum flow in the
# year (QMNA) hydrological variable
get_QMNAtrend = function (df_data, period, p_thresold) {
# Make sure to convert the period to a list
period = as.list(period)
# Set the max interval period as the minimal possible
Imax = 0
# Blank tibble for data to return
df_QMNAtrendB = tibble()
# For all periods
for (per in period) {
# Prepare the data to fit the entry of extract.Var
df_QMNAlist = prepare(df_data, colnamegroup=c('code'))
# Compute the montly mean over the data
df_QMNAEx = extract.Var(data.station=df_QMNAlist,
funct=mean,
period=per,
timestep='year-month',
per.start="01",
pos.datetime=1,
na.rm=TRUE)
# Rerepare the data to fit the entry of extract.Var
df_QMNAlist = reprepare(df_QMNAEx,
df_QMNAlist,
colnamegroup=c('code'))
# Compute the yearly min over the data
df_QMNAEx = extract.Var(data.station=df_QMNAlist,
funct=min,
period=per,
timestep='year',
pos.datetime=1,
na.rm=TRUE)
# Compute the trend analysis
df_QMNAtrend = Estimate.stats(data.extract=df_QMNAEx,
level=p_thresold)
# Get the associated time interval
I = interval(per[1], per[2])
# If it is the largest interval
if (I > Imax) {
# Store it and the associated data and info
Imax = I
df_QMNAlistB = df_QMNAlist
df_QMNAExB = df_QMNAEx
}
# Specify the period of analyse
df_QMNAtrend = get_period(per, df_QMNAtrend,
df_QMNAEx,
df_QMNAlist)
# Store the trend
df_QMNAtrendB = bind_rows(df_QMNAtrendB, df_QMNAtrend)
}
# Clean results of trend analyse
res_QMNAtrend = clean(df_QMNAtrendB, df_QMNAExB, df_QMNAlistB)
return (res_QMNAtrend)
}
### 1.3. VCN10
# Realises the trend analysis of the minimum 10 day average flow
# over the year (VCN10) hydrological variable
211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280
get_VCN10trend = function (df_data, df_meta, period, p_thresold) {
# Get all different stations code
Code = levels(factor(df_meta$code))
# Blank tibble to store the data averaged
df_data_roll = tibble()
# For all the code
for (c in Code) {
# Get the data associated to the code
df_data_code = df_data[df_data$code == c,]
# Perform the roll mean of the flow over 10 days
df_data_code = tibble(Date=rollmean(df_data_code$Date,
10,
fill=NA),
Qm3s=rollmean(df_data_code$Qm3s,
10,
fill=NA),
code=c)
# Store the results
df_data_roll = bind_rows(df_data_roll, df_data_code)
}
# Make sure to convert the period to a list
period = as.list(period)
# Set the max interval period as the minimal possible
Imax = 0
# Blank tibble for data to return
df_VCN10trendB = tibble()
# For all periods
for (per in period) {
# Prepare the data to fit the entry of extract.Var
df_VCN10list = prepare(df_data_roll, colnamegroup=c('code'))
# Compute the yearly min over the averaged data
df_VCN10Ex = extract.Var(data.station=df_VCN10list,
funct=min,
period=per,
timestep='year',
pos.datetime=1,
na.rm=TRUE)
# Compute the trend analysis
df_VCN10trend = Estimate.stats(data.extract=df_VCN10Ex,
level=p_thresold)
# Get the associated time interval
I = interval(per[1], per[2])
# If it is the largest interval
if (I > Imax) {
# Store it and the associated data and info
Imax = I
df_VCN10listB = df_VCN10list
df_VCN10ExB = df_VCN10Ex
}
# Specify the period of analyse
df_VCN10trend = get_period(per, df_VCN10trend, df_VCN10Ex,
df_VCN10list)
# Store the trend
df_VCN10trendB = bind_rows(df_VCN10trendB, df_VCN10trend)
}
# Clean results of trend analyse
res_VCN10trend = clean(df_VCN10trendB, df_VCN10ExB, df_VCN10listB)
return (res_VCN10trend)
}
### 1.4. VCN10 date
# Realises the trend analysis of the date of the minimum 10 day
# average flow over the year (VCN10) hydrological variable
281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350
get_dateVCN10trend = function (df_data, df_meta, period, p_thresold) {
# Get all different stations code
Code = levels(factor(df_meta$code))
# Blank tibble to store the data averaged
df_data_roll = tibble()
# For all the code
for (c in Code) {
# Get the data associated to the code
df_data_code = df_data[df_data$code == c,]
# Perform the roll mean of the flow over 10 days
df_data_code = tibble(Date=df_data_code$Date,
Qm3s=rollmean(df_data_code$Qm3s,
10,
fill=NA),
code=c)
# Store the results
df_data_roll = bind_rows(df_data_roll, df_data_code)
}
# Make sure to convert the period to a list
period = as.list(period)
# Set the max interval period as the minimal possible
Imax = 0
# Blank tibble for data to return
df_VCN10trendB = tibble()
# For all periods
for (per in period) {
# Prepare the data to fit the entry of extract.Var
df_VCN10list = prepare(df_data_roll, colnamegroup=c('code'))
# Compute the yearly min over the averaged data
df_VCN10Ex = extract.Var(data.station=df_VCN10list,
funct=which.min,
period=per,
timestep='year',
pos.datetime=1)
# Converts index of the VCN10 to the julian date associated
df_VCN10Ex = prepare_date(df_VCN10Ex, df_VCN10list)
# Compute the trend analysis
df_VCN10trend = Estimate.stats(data.extract=df_VCN10Ex,
level=p_thresold)
# Get the associated time interval
I = interval(per[1], per[2])
# If it is the largest interval
if (I > Imax) {
# Store it and the associated data and info
Imax = I
df_VCN10listB = df_VCN10list
df_VCN10ExB = df_VCN10Ex
}
# Specify the period of analyse
df_VCN10trend = get_period(per, df_VCN10trend, df_VCN10Ex,
df_VCN10list)
# Store the trend
df_VCN10trendB = bind_rows(df_VCN10trendB, df_VCN10trend)
}
# Clean results of trend analyse
res_VCN10trend = clean(df_VCN10trendB, df_VCN10ExB, df_VCN10listB)
return (res_VCN10trend)
}
## 2. OTHER ANALYSES
### 2.1. Break date
351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420
# Compute the break date of the flow data by station
get_break = function (df_data, df_meta, p_thresold=0.05) {
# Get all different stations code
Code = levels(factor(df_meta$code))
# Number of stations
nCode = length(Code)
# Blank date break list and associated station code vector
date_break = list()
Code_break = c()
# For all accessible code
for (code in Code) {
# Get the associated data
df_data_code = df_data[df_data$code == code,]
# Remove NA data
df_data_codeNoNA = df_data_code[!is.na(df_data_code$Qm3s),]
# Perform the break analysis thanks to the Pettitt test
res_break = pettitt.test(df_data_codeNoNA$Qm3s)
# Extract p value
p_value = res_break$p
# The length of the data analysed
nbreak = res_break$nobs
# Index of the break date
ibreak = res_break$estimate
# If the p value results is under the thresold
if (p_value <= p_thresold) {
# Get the mean of the index break if there is several
ibreak = round(mean(ibreak), 0)
# Store the date break with its associated code
date_break = append(date_break,
df_data_codeNoNA$Date[ibreak])
Code_break = append(Code_break, code)
}
# step1 = mean(df_data_codeNoNA$Qm3s[1:ibreak])
# step2 = mean(df_data_codeNoNA$Qm3s[(ibreak+1):nbreak])
}
# Create a tibble with the break analysis results
df_break = tibble(code=Code_break, Date=as.Date(date_break))
return (df_break)
}
### 2.2. Time gap
# Compute the time gap by station
get_lacune = function (df_data, df_meta) {
# Get all different stations code
Code = levels(factor(df_meta$code))
# Create new vector to stock results for cumulative and mean
# time gap by station
tLac = c()
meanLac = c()
# Get rows where there is no NA
NoNA = complete.cases(df_data)
# Get data where there is no NA
df_data_NoNA = df_data[NoNA,]
# For every station
for (code in Code) {
# Get only the data rows for the selected station
df_data_code = df_data[df_data$code==code,]
# Get date for the selected station
Date = df_data_code$Date
# Get time span for the selection station
421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451
span = as.numeric(Date[length(Date)] - Date[1])
# Get only the data rows with no NA for the selected station
df_data_NoNA_code = df_data_NoNA[df_data_NoNA$code==code,]
# Get date for the selected station
Date_NoNA = df_data_NoNA_code$Date
# Compute the time gap
lac = as.numeric(diff(Date_NoNA) - 1)
# Compute the cumulative gap
lac_sum = sum(lac)
# Store the cumulative gap rate
tLac = c(tLac, lac_sum/span)
# Compute the mean gap
lac_mean = mean(lac[lac != 0])
# Store the mean gap
meanLac = c(meanLac, lac_mean)
}
# Compute the cumulative gap rate in pourcent
tLac100 = tLac * 100
# Create tibble for lacune
df_lac = tibble(code=Code, tLac100=tLac100, meanLac=meanLac)
# Join a tibble
df_meta = full_join(df_meta, df_lac)
return (df_meta)
}