PlotSedReach.py 7.82 KiB
# PlotSedReach.py -- Pamhyr
# Copyright (C) 2024  INRAE
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <https://www.gnu.org/licenses/>.

# -*- coding: utf-8 -*-

import logging

from functools import reduce

from tools import timer
from View.Tools.PamhyrPlot import PamhyrPlot

from PyQt5.QtCore import (
    QCoreApplication
)

_translate = QCoreApplication.translate

logger = logging.getLogger()


class PlotSedReach(PamhyrPlot):
    def __init__(self, canvas=None, trad=None, toolbar=None,
                 results=None, reach_id=0, profile_id=0,
                 parent=None):
        super(PlotSedReach, self).__init__(
            canvas=canvas,
            trad=trad,
            data=results,
            toolbar=toolbar,
            parent=parent
        )

        self._results = results

        self._current_timestamp = max(results.get("timestamps"))
        self._current_reach_id = reach_id
        self._current_profile_id = profile_id

    @property
    def results(self):
        return self.data

    @results.setter
    def results(self, results):
        self.data = results
        self._results = results
        self._current_timestamp = max(results.get("timestamps"))

    # DEPRECATED version of sediment layser display
    # def _get_zsl(self, reach):
    #     kp = reach.geometry.get_kp()
    #     z_min = reach.geometry.get_z_min()
    #     z_max = reach.geometry.get_z_max()

    #     profiles_sl = list(
    #         map(
    #             # Get SL list for profile p
    #             lambda p: p.get_ts_key(self._current_timestamp, "sl"),
    #             reach.profiles
    #         )
    #     )

    #     max_sl_num = reduce(
    #         lambda acc, sl: max(acc, len(sl)),
    #         profiles_sl,
    #         0
    #     )

    #     sl = []
    #     for i in range(max_sl_num):
    #         cur = []
    #         for profile_sl in profiles_sl:
    #             if i < len(profile_sl):
    #                 cur.append(profile_sl[i][0])
    #             else:
    #                 cur.append(0)
    #         sl.append(cur)

    #     self.canvas.axes.set_xlim(
    #         left = min(kp) - 10, right = max(kp) + 10
    #     )

    #     # Dummy layer with height = 0
    #     f = list(map(lambda p: 0, reach.profiles))

    #     # We compute Z sediment layer in reverse order, from last layer to
    #     # fake river bottom
    #     r_sl = list(reversed(sl))
    #     z_sl = reduce(
    #         lambda acc, v: acc + [
    #             list(
    #                 map(lambda x, y: y + x, v, acc[-1])
    #             )
    #         ],
    #         r_sl,
    #         [f]
    #     )

    #     # We normalize Z coordinate to 0 (the maximum must be 0)
    #     f_z_max = max(z_sl[-1])
    #     z_sl = list(
    #         map(
    #             lambda p: list(map(lambda z: z - f_z_max, p)),
    #             z_sl
    #         )
    #     )

    #     # We apply the river geometry bottom height at each layers to
    #     # fond the new river geometry
    #     z_sl = list(
    #         map(
    #             lambda sl: list(
    #                 map(lambda z, m: z + m, sl, z_min)
    #             ),
    #             z_sl
    #         )
    #     )

    #     return z_sl

    def get_zsl(self, reach):
        kp = reach.geometry.get_kp()
        z_min = reach.geometry.get_z_min()
        z_max = reach.geometry.get_z_max()

        profiles_sl_0 = list(
            map(
                # Get SL list for profile p at time 0 (initial data)
                lambda p: p.get_ts_key(0.0, "sl")[0],
                reach.profiles
            )
        )
        profiles_sl = list(
            map(
                # Get SL list for profile p at current time
                lambda p: p.get_ts_key(self._current_timestamp, "sl")[0],
                reach.profiles
            )
        )

        max_sl_num = reduce(
            lambda acc, sl: max(acc, len(sl)),
            profiles_sl,
            0
        )
        f = list(map(lambda p: 0, reach.profiles))

        sl = []
        sl_0 = []
        for i in range(max_sl_num):
            cur = []
            cur_0 = []
            for profile_sl, profile_sl_0 in zip(profiles_sl, profiles_sl_0):
                if i < len(profile_sl_0):
                    cur.append(profile_sl[i][0])
                    cur_0.append(profile_sl_0[i][0])
                else:
                    cur.append(0)
                    cur_0.append(0)
            sl.append(cur)
            sl_0.append(cur_0)

        # Compute sediment layer from initial data in function to
        # profile z_min
        z_sl = reduce(
            lambda acc, v: acc + [
                list(
                    map(
                        lambda x, y: y - x,
                        v, acc[-1]
                    )
                )
            ],
            sl_0,
            [z_min]
        )

        # Diff between initial data and data att current timestamp
        d_sl = list(
            map(
                lambda ln0, lni: list(
                    map(
                        lambda z0, zi: z0 - zi,
                        ln0, lni
                    )
                ),
                sl_0, sl
            )
        )

        # Apply diff for t0 for each layer Z
        z_sl = list(
            map(
                lambda z, d: list(
                    map(
                        lambda zn, dn: zn - dn,
                        z, d
                    )
                ),
                z_sl,
                d_sl + [f]      # HACK: Add dummy data for last layer
            )
        )

        return list(reversed(z_sl))

    @timer
    def draw(self):
        self.canvas.axes.cla()
        self.canvas.axes.grid(color='grey', linestyle='--', linewidth=0.5)

        if self.data is None:
            return

        reach = self._results.river.reach(self._current_reach_id)
        if reach.geometry.number_profiles == 0:
            return

        self.canvas.axes.set_xlabel(
            _translate("MainWindow_reach", "Kp (m)"),
            color='black', fontsize=10
        )
        self.canvas.axes.set_ylabel(
            _translate("MainWindow_reach", "Height (m)"),
            color='black', fontsize=10
        )

        kp = reach.geometry.get_kp()
        z_min = reach.geometry.get_z_min()
        z_max = reach.geometry.get_z_max()

        z_sl = self.get_zsl(reach)

        # Draw
        self.line_kp_sl = []
        for i, z in enumerate(z_sl):
            self.line_kp_sl.append(None)
            self.line_kp_sl[i], = self.canvas.axes.plot(
                kp, z,
                linestyle="solid" if i == len(z_sl) - 1 else "--",
                lw=1.8,
                color='grey' if i == len(z_sl) - 1 else None
            )

        self.canvas.figure.tight_layout()
        self.canvas.figure.canvas.draw_idle()
        if self.toolbar is not None:
            self.toolbar.update()

        self._init = False

    @timer
    def update(self, ind=None):
        if not self._init:
            self.draw()
            return

    def set_reach(self, reach_id):
        self._current_reach_id = reach_id
        self._current_profile_id = 0
        self.draw()

    def set_profile(self, profile_id):
        self._current_profile_id = profile_id
        self.draw()

    def set_timestamp(self, timestamp):
        self._current_timestamp = timestamp
        self.draw()