ohmpi.py 47.17 KiB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
# -*- coding: utf-8 -*-
"""
created on January 6, 2020.
Updates dec 2023; in-depth refactoring May 2023.
Hardware: Licensed under CERN-OHL-S v2 or any later version
Software: Licensed under the GNU General Public License v3.0
Ohmpi.py is a program to control a low-cost and open hardware resistivity meters within the OhmPi project by
Rémi CLEMENT (INRAE), Vivien DUBOIS (INRAE), Hélène GUYARD (IGE), Nicolas FORQUET (INRAE), Yannick FARGIER (IFSTTAR)
Olivier KAUFMANN (UMONS), Arnaud WATLET (UMONS) and Guillaume BLANCHY (FNRS/ULiege).
"""

import os
import json
from copy import deepcopy
import numpy as np
import csv
import time
import pandas as pd
from shutil import rmtree, make_archive
from threading import Thread
from inspect import getmembers, isfunction
from datetime import datetime
from termcolor import colored
from logging import DEBUG
from ohmpi.utils import get_platform
from ohmpi.logging_setup import setup_loggers
from ohmpi.config import MQTT_CONTROL_CONFIG, OHMPI_CONFIG, EXEC_LOGGING_CONFIG
import ohmpi.deprecated as deprecated
from ohmpi.hardware_system import OhmPiHardware

# finish import (done only when class is instantiated as some libs are only available on arm64 platform)
try:
    arm64_imports = True
except ImportError as error:
    if EXEC_LOGGING_CONFIG['logging_level'] == DEBUG:
        print(colored(f'Import error: {error}', 'yellow'))
    arm64_imports = False
except Exception as error:
    print(colored(f'Unexpected error: {error}', 'red'))
    arm64_imports = None

VERSION = '3.0.0-beta'


class OhmPi(object):
    """OhmPi class.
    Construct the ohmpi object.

    Parameters
    ----------
    settings : dict, optional
        Dictionnary of parameters. Possible parameters with their default values:
        `{'injection_duration': 0.2, 'nb_meas': 1, 'sequence_delay': 1,
        'nb_stack': 1, 'sampling_interval': 2, 'tx_volt': 5, 'duty_cycle': 0.5,
        'strategy': 'constant', 'export_path': None
    sequence : str, optional
        Path of the .csv or .txt file with A, B, M and N electrodes.
        Electrode index starts at 1. See `OhmPi.load_sequence()` for full docstring.
    mqtt : bool, optional
        If True (default), publish on mqtt topics while logging,
        otherwise use other loggers only (print).
    """
    def __init__(self, settings=None, sequence=None, mqtt=True):
        self._sequence = sequence
        self.nb_samples = 0
        self.status = 'idle'  # either running or idle
        self.thread = None  # contains the handle for the thread taking the measurement

        # set loggers
        self.exec_logger, _, self.data_logger, _, self.soh_logger, _, _, msg = setup_loggers(mqtt=mqtt)
        print(msg)

        # specify loggers when instancing the hardware
        self._hw = OhmPiHardware(**{'exec_logger': self.exec_logger, 'data_logger': self.data_logger,
                                    'soh_logger': self.soh_logger})
        self.exec_logger.info('Hardware configured...')

        # default acquisition settings
        self.settings = {}
        self.update_settings(os.path.join(os.path.split(os.path.dirname(__file__))[0],'settings/default.json'))

        # read in acquisition settings
        self.update_settings(settings)
        self.exec_logger.debug('Initialized with settings:' + str(self.settings))

        # read quadrupole sequence
        if sequence is not None:
            self.load_sequence(sequence)

        # set controller
        self.mqtt = mqtt
        self.cmd_id = None
        if self.mqtt:
            import paho.mqtt.client as mqtt_client

            self.exec_logger.debug(f"Connecting to control topic {MQTT_CONTROL_CONFIG['ctrl_topic']}"
                                   f" on {MQTT_CONTROL_CONFIG['hostname']} broker")

            def connect_mqtt() -> mqtt_client:
                def on_connect(mqttclient, userdata, flags, rc):
                    if rc == 0:
                        self.exec_logger.debug(f"Successfully connected to control broker:"
                                               f" {MQTT_CONTROL_CONFIG['hostname']}")
                    else:
                        self.exec_logger.warning(f'Failed to connect to control broker. Return code : {rc}')

                client = mqtt_client.Client(f"ohmpi_{OHMPI_CONFIG['id']}_listener", clean_session=False)
                client.username_pw_set(MQTT_CONTROL_CONFIG['auth'].get('username'),
                                       MQTT_CONTROL_CONFIG['auth']['password'])
                client.on_connect = on_connect
                client.connect(MQTT_CONTROL_CONFIG['hostname'], MQTT_CONTROL_CONFIG['port'])
                return client

            try:
                self.exec_logger.debug(f"Connecting to control broker: {MQTT_CONTROL_CONFIG['hostname']}")
                self.controller = connect_mqtt()
            except Exception as e:
                self.exec_logger.debug(f'Unable to connect control broker: {e}')
                self.controller = None
            if self.controller is not None:
                self.exec_logger.debug(f"Subscribing to control topic {MQTT_CONTROL_CONFIG['ctrl_topic']}")
                try:
                    self.controller.subscribe(MQTT_CONTROL_CONFIG['ctrl_topic'], MQTT_CONTROL_CONFIG['qos'])

                    msg = f"Subscribed to control topic {MQTT_CONTROL_CONFIG['ctrl_topic']}" \
                          f" on {MQTT_CONTROL_CONFIG['hostname']} broker"
                    self.exec_logger.debug(msg)
                    print(colored(f'\u2611 {msg}', 'blue'))
                except Exception as e:
                    self.exec_logger.warning(f'Unable to subscribe to control topic : {e}')
                    self.controller = None
                publisher_config = MQTT_CONTROL_CONFIG.copy()
                publisher_config['topic'] = MQTT_CONTROL_CONFIG['ctrl_topic']
                publisher_config.pop('ctrl_topic')

                def on_message(client, userdata, message):
                    command = message.payload.decode('utf-8')
                    self.exec_logger.debug(f'Received command {command}')
                    self._process_commands(command)

                self.controller.on_message = on_message
            else:
                self.controller = None
                self.exec_logger.warning('No connection to control broker.'
                                         ' Use python/ipython to interact with OhmPi object...')

    @classmethod
    def get_deprecated_methods(cls):
        for i in getmembers(deprecated, isfunction):
            setattr(cls, i[0], i[1])

    @staticmethod
    def append_and_save(filename: str, last_measurement: dict, fw_in_csv=None, fw_in_zip=None, cmd_id=None):
        """Appends and saves the last measurement dict.

        Parameters
        ----------
        filename : str
            Filename of the .csv.
        last_measurement : dict
            Last measurement taken in the form of a python dictionary.
        fw_in_csv : bool, optional
            Wether to save the full-waveform data in the .csv (one line per quadrupole).
            As these readings have different lengths for different quadrupole, the data are padded with NaN.
            If None, default is read from default.json.
        fw_in_zip : bool, optional
            Wether to save the full-waveform data in a separate .csv in long format to be zipped to
            spare space. If None, default is read from default.json.
        cmd_id : str, optional
            Unique command identifier.
        """
        # check arguments
        if fw_in_csv is None:
            fw_in_csv = self.settings['fw_in_csv']
        if fw_in_zip is None:
            fw_in_zip = self.settings['fw_in_zip']

        # check if directory 'data' exists
        ddir = os.path.split(filename)[0]
        if os.path.exists(ddir) is not True:
            os.mkdir(ddir)

        last_measurement = deepcopy(last_measurement)
        
        # save full waveform data in a long .csv file
        if fw_in_zip:
            fw_filename = filename.replace('.csv', '_fw.csv')
            if not os.path.exists(fw_filename):  # new file, write headers first
                with open(fw_filename, 'w') as f:
                    f.write('A,B,M,N,t,pulse,polarity,current,voltage\n')
            # write full data
            with open(fw_filename, 'a') as f:
                dd = last_measurement['full_waveform']
                aa = np.repeat(last_measurement['A'], dd.shape[0])
                bb = np.repeat(last_measurement['B'], dd.shape[0])
                mm = np.repeat(last_measurement['M'], dd.shape[0])
                nn = np.repeat(last_measurement['N'], dd.shape[0])
                fwdata = np.c_[aa, bb, mm, nn, dd]
                np.savetxt(f, fwdata, fmt=['%d', '%d', '%d', '%d', '%.3f', '%.3f', '%.3f'])

        if fw_in_csv:
            d = last_measurement['full_waveform']
            n = d.shape[0]
            if n > 1:
                idic = dict(zip(['i' + str(i) for i in range(n)], d[:, 0]))
                udic = dict(zip(['u' + str(i) for i in range(n)], d[:, 1]))
                tdic = dict(zip(['t' + str(i) for i in range(n)], d[:, 2]))
                last_measurement.update(idic)
                last_measurement.update(udic)
                last_measurement.update(tdic)
            last_measurement.pop('full_waveform')
        
        if os.path.isfile(filename):
            # Load data file and append data to it
            with open(filename, 'a') as f:
                w = csv.DictWriter(f, last_measurement.keys())
                w.writerow(last_measurement)
        else:
            # create data file and add headers
            with open(filename, 'a') as f:
                w = csv.DictWriter(f, last_measurement.keys())
                w.writeheader()
                w.writerow(last_measurement)


    @staticmethod
    def _find_identical_in_line(quads):
        """Finds quadrupole where A and B are identical.
        If A and B were connected to the same electrode, we would create a short-circuit.

        Parameters
        ----------
        quads : numpy.ndarray
            List of quadrupoles of shape nquad x 4 or 1D vector of shape nquad.

        Returns
        -------
        output : numpy.ndarray 1D array of int
            List of index of rows where A and B are identical.
        """
        # if we have a 1D array (so only 1 quadrupole), make it a 2D array
        if len(quads.shape) == 1:
            quads = quads[None, :]

        output = np.where(quads[:, 0] == quads[:, 1])[0]

        return output

    def get_data(self, survey_names=None, cmd_id=None):
        """Get available data.
        
        Parameters
        ----------
        survey_names : list of str, optional
            List of filenames already available from the html interface. So
            their content won't be returned again. Only files not in the list
            will be read.
        cmd_id : str, optional
            Unique command identifier.
        """
        # get all .csv file in data folder
        if survey_names is None:
            survey_names = []
        # ddir = os.path.join(os.path.dirname(__file__), '../data/')
        ddir = self.settings['export_dir']
        fnames = [fname for fname in os.listdir(ddir) if fname[-4:] == '.csv']
        ddic = {}
        if cmd_id is None:
            cmd_id = 'unknown'
        for fname in fnames:
            if ((fname != 'readme.txt')
                    and ('_rs' not in fname)
                    and (fname.replace('.csv', '') not in survey_names)):
                #try:
                # reading headers
                with open(os.path.join(ddir, fname), 'r') as f:
                    headers = f.readline().split(',')
                
                # fixing possible incompatibilities with code version
                for i, header in enumerate(headers):
                    if header == 'R [ohm]':
                        headers[i] = 'R [Ohm]'
                icols = list(np.where(np.in1d(headers, ['A', 'B', 'M', 'N', 'R [Ohm]']))[0])
                data = np.loadtxt(os.path.join(ddir, fname), delimiter=',',
                                    skiprows=1, usecols=icols)
                data = data[None, :] if len(data.shape) == 1 else data
                ddic[fname.replace('.csv', '')] = {
                    'a': data[:, 0].astype(int).tolist(),
                    'b': data[:, 1].astype(int).tolist(),
                    'm': data[:, 2].astype(int).tolist(),
                    'n': data[:, 3].astype(int).tolist(),
                    'rho': data[:, 4].tolist(),
                }
                #except Exception as e:
                #    print(fname, ':', e)
        rdic = {'cmd_id': cmd_id, 'data': ddic}
        self.data_logger.info(json.dumps(rdic))
        return ddic

    def interrupt(self, cmd_id=None):
        """Interrupts the acquisition.

        Parameters
        ----------
        cmd_id : str, optional
            Unique command identifier.
        """
        self.status = 'stopping'
        if self.thread is not None:
            self.thread.join()
            self.exec_logger.debug('Interrupted sequence acquisition...')
        else:
            self.exec_logger.debug('No sequence measurement thread to interrupt.')
        self.status = 'idle'
        self.exec_logger.debug(f'Status: {self.status}')

    def load_sequence(self, filename: str, cmd_id=None):
        """Reads quadrupole sequence from file.

        Parameters
        ----------
        filename : str
            Path of the .csv or .txt file with A, B, M and N electrodes.
            Electrode index start at 1.
        cmd_id : str, optional
            Unique command identifier.

        Returns
        -------
        sequence : numpy.ndarray
            Array of shape (number quadrupoles * 4).
        """
        self.exec_logger.debug(f'Loading sequence {filename}')
        sequence = np.loadtxt(filename, delimiter=" ", dtype=np.uint32, ndmin=2)  # load quadrupole file

        if sequence is not None:
            self.exec_logger.debug(f'Sequence of {sequence.shape[0]:d} quadrupoles read.')

        # locate lines where electrode A == electrode B
        test_same_elec = self._find_identical_in_line(sequence)

        if len(test_same_elec) != 0:
            for i in range(len(test_same_elec)):
                self.exec_logger.error(f'An electrode index A == B detected at line {str(test_same_elec[i] + 1)}')
            sequence = None

        if sequence is not None:
            self.exec_logger.info(f'Sequence {filename} of {sequence.shape[0]:d} quadrupoles loaded.')
        else:
            self.exec_logger.warning(f'Unable to load sequence {filename}')
        self.sequence = sequence

    def _process_commands(self, message: str):
        """Processes commands received from the controller(s).

        Parameters
        ----------
        message : str
            Message containing a command and arguments or keywords and arguments.
        """
        self.status = 'idle'
        cmd_id = '?'
        try:
            decoded_message = json.loads(message)
            self.exec_logger.debug(f'Decoded message {decoded_message}')
            cmd_id = decoded_message.pop('cmd_id', None)
            cmd = decoded_message.pop('cmd', None)
            kwargs = decoded_message.pop('kwargs', None)
            self.exec_logger.debug(f"Calling method {cmd}({str(kwargs) if kwargs is not None else ''})")
            if cmd_id is None:
                self.exec_logger.warning('You should use a unique identifier for cmd_id')
            if cmd is not None:
                try:
                    if kwargs is None:
                        output = getattr(self, cmd)()
                    else:
                        output = getattr(self, cmd)(**kwargs)
                    status = True
                except Exception as e:
                    self.exec_logger.error(
                        f"Unable to execute {cmd}({str(kwargs) if kwargs is not None else ''}): {e}")
        except Exception as e:
            self.exec_logger.warning(f'Unable to decode command {message}: {e}')
        finally:
            reply = {'cmd_id': cmd_id, 'status': self.status}
            reply = json.dumps(reply)
            self.exec_logger.debug(f'Execution report: {reply}')

    def quit(self, cmd_id=None):
        """Quits OhmPi.

        Parameters
        ----------
        cmd_id : str, optional
            Unique command identifier.
        """

        self.exec_logger.debug(f'Quitting ohmpi.py following command {cmd_id}')
        exit()

    def _read_hardware_config(self):
        """Reads hardware configuration from config.py.
        """
        self.exec_logger.debug('Getting hardware config')
        self.id = OHMPI_CONFIG['id']  # ID of the OhmPi
        self.exec_logger.debug(f'OHMPI_CONFIG = {str(OHMPI_CONFIG)}')

    def remove_data(self, cmd_id=None):
        """Remove all data in the ´export_path´ folder on the raspberrypi.

        Parameters
        ----------
        cmd_id : str, optional
            Unique command identifier.
        """
        self.exec_logger.debug(f'Removing all data following command {cmd_id}')
        datadir = os.path.split(self.settings['export_path'])
        #datadir = os.path.join(os.path.dirname(__file__), '../data')
        rmtree(datadir)
        os.mkdir(datadir)

    def restart(self, cmd_id=None):
        """Restarts the Raspberry Pi.

        Parameters
        ----------
        cmd_id : str, optional
            Unique command identifier.
        """
        self.exec_logger.info(f'Restarting pi following command {cmd_id}...')
        os.system('reboot')  # this may need admin rights

    def download_data(self, cmd_id=None):
        """Create a zip of the data folder to then download it easily.
        """
        datadir = os.path.split(self.settings['export_path'])
        # datadir = os.path.join(os.path.dirname(__file__), '../data/')
        make_archive(datadir, 'zip', 'data')
        self.data_logger.info(json.dumps({'download': 'ready'}))

    def shutdown(self, cmd_id=None):
        """Shutdown the Raspberry Pi.

        Parameters
        ----------
        cmd_id : str, optional
            Unique command identifier
        """
        self.exec_logger.info(f'Restarting pi following command {cmd_id}...')
        os.system('poweroff')  # this may require admin rights
 
    def run_measurement(self, quad=None, nb_stack=None, injection_duration=None, duty_cycle=None,
                        autogain=True, strategy='constant', tx_volt=5., best_tx_injtime=0.1,
                        cmd_id=None, vab_max=None, iab_max=None, vmn_max=None, vmn_min=None, **kwargs):
        # TODO: add sampling_interval -> impact on _hw.rx.sampling_rate (store the current value, change the _hw.rx.sampling_rate, do the measurement, reset the sampling_rate to the previous value)
        # TODO: default value of tx_volt and other parameters set to None should be given in config.py and used in function definition
        """Measures on a quadrupole and returns a dictionnary with the transfer resistance.

        Parameters
        ----------
        quad : iterable (list of int)
            Quadrupole to measure, just for labelling. Only switch_mux_on/off
            really create the route to the electrodes.
        nb_stack : int, optional
            Number of stacks. A stack is considered two pulses (one
            positive, one negative). If 0, we will look for the best voltage.
        injection_duration : int, optional
            Injection time in seconds.
        duty_cycle : float, optional
            Duty cycle (default=0.5) of injection square wave.
        strategy : str, optional, default: constant
            Define injection strategy (if power is adjustable, otherwise constant tx_volt, generally 12V battery is used).
            Either:
            - vmax : compute Vab to reach a maximum Vmn_max and Iab without exceeding vab_max
            - vmin : compute Vab to reach at least Vmn_min
            - constant : apply given Vab (tx_volt) -
                Safety check (i.e. short voltage pulses) performed prior to injection to ensure
                injection within bounds defined in vab_max, iab_max, vmn_max or vmn_min. This can adapt Vab.
                To bypass safety check before injection, tx_volt should be set equal to vab_max (not recpommanded)
        vab_max : str, optional
            Maximum injection voltage.
            Default value set by config or boards specs
        iab_max : str, optional
            Maximum current applied.
            Default value set by config or boards specs
        vmn_max : str, optional
            Maximum Vmn allowed.
            Default value set by config or boards specs
        vmn_min :
            Minimum Vmn desired (used in strategy vmin).
            Default value set by config or boards specs
        tx_volt : float, optional  # TODO: change tx_volt to Vab
            For power adjustable only. If specified, voltage will be imposed.
        cmd_id : str, optional
            Unique command identifier.
        """
        # check pwr is on, if not, let's turn it on
        switch_power_off = False
        if self._hw.pwr_state == 'off':
            self._hw.pwr_state = 'on'
            switch_power_off = True

        self.exec_logger.debug('Starting measurement')
        self.exec_logger.debug('Waiting for data')

        # check arguments
        if quad is None:
            quad = np.array([0, 0, 0, 0])
        if nb_stack is None:
            nb_stack = self.settings['nb_stack']
        if injection_duration is None:
            injection_duration = self.settings['injection_duration']
        if duty_cycle is None:
            duty_cycle = self.settings['duty_cycle']
        bypass_check = kwargs['bypass_check'] if 'bypass_check' in kwargs.keys() else False
        d = {}
        if self.switch_mux_on(quad, bypass_check=bypass_check, cmd_id=cmd_id):
            tx_volt = self._hw.compute_tx_volt(tx_volt=tx_volt, strategy=strategy, vmn_max=vmn_max, vab_max=vab_max, iab_max=iab_max)  # TODO: use tx_volt and vmn_max instead of hardcoded values
            time.sleep(0.5)  # to wait for pwr discharge
            self._hw.vab_square_wave(tx_volt, cycle_duration=injection_duration*2/duty_cycle, cycles=nb_stack, duty_cycle=duty_cycle)
            if 'delay' in kwargs.keys():
                delay = kwargs['delay']
            else:
                delay = injection_duration * 2/3  # TODO: check if this is ok and if last point is not taken the end of injection
            x = np.where((self._hw.readings[:, 0] >= delay) & (self._hw.readings[:, 2] != 0))
            Vmn = self._hw.last_vmn(delay=delay)
            Vmn_std = self._hw.last_vmn_dev(delay=delay)
            I =  self._hw.last_iab(delay=delay)
            I_std =  self._hw.last_iab_dev(delay=delay)
            R = self._hw.last_resistance(delay=delay)
            R_std = self._hw.last_dev(delay=delay)
            d = {
                "time": datetime.now().isoformat(),
                "A": quad[0],
                "B": quad[1],
                "M": quad[2],
                "N": quad[3],
                "inj time [ms]": injection_duration * 1000.,  # NOTE: check this
                "Vmn [mV]": Vmn,
                "I [mA]": I,
                "R [Ohm]": R,
                "R_std [%]": R_std,
                "Ps [mV]": self._hw.sp,
                "nbStack": nb_stack,
                "Tx [V]": tx_volt,
                "CPU temp [degC]": self._hw.ctl.cpu_temperature,
                "Nb samples [-]": len(self._hw.readings[x, 2]),  # TODO: use only samples after a delay in each pulse
                "full_waveform": self._hw.readings[:, [0, -2, -1]],
                "I_std [%]": I_std,
                "Vmn_std [%]": Vmn_std,
                "R_ab [kOhm]": tx_volt / I
            }

            # to the data logger
            dd = d.copy()
            dd.pop('full_waveform')  # too much for logger
            dd.update({'A': str(dd['A'])})
            dd.update({'B': str(dd['B'])})
            dd.update({'M': str(dd['M'])})
            dd.update({'N': str(dd['N'])})

            # round float to 2 decimal
            for key in dd.keys():  # Check why this is applied on keys and not values...
                if isinstance(dd[key], float):
                    dd[key] = np.round(dd[key], 3)
            dd['cmd_id'] = str(cmd_id)
            self.data_logger.info(dd)
            self._hw.switch_mux(electrodes=quad[0:2], roles=['A', 'B'], state='on')
            time.sleep(1.0)
            self._hw.switch_mux(electrodes=quad[0:2], roles=['A', 'B'], state='off')
        else:
            self.exec_logger.info(f'Skipping {quad}')
        self.switch_mux_off(quad, cmd_id)

        # if power was off before measurement, let's turn if off
        if switch_power_off:
            self._hw.pwr_state = 'off'

        return d

    def repeat_sequence(self, **kwargs):
        """Identical to run_multiple_sequences().
        """
        self.run_multiple_sequences(**kwargs)

    def run_multiple_sequences(self, sequence_delay=None, nb_meas=None, fw_in_csv=None,
    fw_in_zip=None, cmd_id=None, **kwargs):
        """Runs multiple sequences in a separate thread for monitoring mode.
           Can be stopped by 'OhmPi.interrupt()'.
           Additional arguments are passed to run_measurement().

        Parameters
        ----------
        sequence_delay : int, optional
            Number of seconds at which the sequence must be started from each others.
        nb_meas : int, optional
            Number of time the sequence must be repeated.
        fw_in_csv : bool, optional
            Wether to save the full-waveform data in the .csv (one line per quadrupole).
            As these readings have different lengths for different quadrupole, the data are padded with NaN.
            If None, default is read from default.json.
        fw_in_zip : bool, optional
            Wether to save the full-waveform data in a separate .csv in long format to be zipped to
            spare space. If None, default is read from default.json.
        cmd_id : str, optional
            Unique command identifier.
        kwargs : dict, optional
            See help(OhmPi.run_measurement) for more info.
        """
        if sequence_delay is None:
            sequence_delay = self.settings['sequence_delay']
        sequence_delay = int(sequence_delay)
        if nb_meas is None:
            nb_meas = self.settings['nb_meas']
        self.status = 'running'
        self.exec_logger.debug(f'Status: {self.status}')
        self.exec_logger.debug(f'Measuring sequence: {self.sequence}')

        # # kill previous running thread
        # if self.thread is not None:
        #     self.exec_logger.info('Removing previous thread')
        #     self.thread.stop()
        #     self.thread.join()

        def func():
            for g in range(0, nb_meas):  # for time-lapse monitoring
                if self.status == 'stopping':
                    self.exec_logger.warning('Data acquisition interrupted')
                    break
                t0 = time.time()
                self.run_sequence(fw_in_csv=fw_in_csv, fw_in_zip=fw_in_zip, **kwargs)
                dt = sequence_delay - (time.time() - t0)  # sleeping time between sequence
                if dt < 0:
                    dt = 0
                if nb_meas > 1:
                    if self.status == 'stopping':
                        break
                    time.sleep(dt)  # waiting for next measurement (time-lapse)
            self.status = 'idle'

        self.thread = Thread(target=func)
        self.thread.start()

    def run_sequence(self, fw_in_csv=None, fw_in_zip=None, cmd_id=None, **kwargs):
        """Runs sequence synchronously (=blocking on main thread).
           Additional arguments are passed to run_measurement().

        Parameters
        ----------
        fw_in_csv : bool, optional
            Wether to save the full-waveform data in the .csv (one line per quadrupole).
            As these readings have different lengths for different quadrupole, the data are padded with NaN.
            If None, default is read from default.json.
        fw_in_zip : bool, optional
            Wether to save the full-waveform data in a separate .csv in long format to be zipped to
            spare space. If None, default is read from default.json.
        cmd_id : str, optional
            Unique command identifier.
        """
        # check arguments
        if fw_in_csv is None:
            fw_in_csv = self.settings['fw_in_csv']
        if fw_in_zip is None:
            fw_in_zip = self.settings['fw_in_zip']

        # switch power on
        self._hw.pwr_state = 'on'
        self.status = 'running'
        self.exec_logger.debug(f'Status: {self.status}')
        self.exec_logger.debug(f'Measuring sequence: {self.sequence}')
        t0 = time.time()
        self.reset_mux()
        
        # create filename with timestamp
        if self.settings["export_path"] is None:
            filename = self.settings['export_path'].replace(
                '.csv', f'_{datetime.now().strftime("%Y%m%dT%H%M%S")}.csv')
        else:
            filename = self.settings["export_path"].replace('.csv',
                                                        f'_{datetime.now().strftime("%Y%m%dT%H%M%S")}.csv')
        self.exec_logger.debug(f'Saving to {filename}')

        # measure all quadrupole of the sequence
        if self.sequence is None:
            n = 1
        else:
            n = self.sequence.shape[0]
        for i in range(0, n):
            if self.sequence is None:
                quad = np.array([0, 0, 0, 0])
            else:
                quad = self.sequence[i, :]  # quadrupole
            if self.status == 'stopping':
                break
            # run a measurement
            acquired_data = self.run_measurement(quad=quad, **kwargs)
     
            # log data to the data logger
            self.data_logger.info(acquired_data)

            # add command_id in dataset
            acquired_data.update({'cmd_id': cmd_id})
            # log data to the data logger
            # self.data_logger.info(f'{acquired_data}')  # NOTE: It could be useful to keep the cmd_id in the
            # save data and print in a text file
            self.append_and_save(filename, acquired_data, fw_in_csv=fw_in_csv, fw_in_zip=fw_in_zip)
            self.exec_logger.debug(f'quadrupole {i + 1:d}/{n:d}')
        self._hw.pwr_state = 'off'

        # file management
        if fw_in_csv:  # make sure we have the same number of columns
            with open(filename, '.csv', 'r') as f:
                x = f.readlines()

            # get column of start of full-waveform
            icol = 0
            for i, col in enumerate(x[0].split(',')):
                if col == 't1':
                    icol = i
                    break

            # get longest possible line
            max_length = np.max([len(row.split(',')) for row in x]) - icol
            nreadings = max_length // 5
            print('-----', nreadings, max_length)

            # create padding array for full-waveform  # TODO test this!
            with open(filename, '.csv', 'w') as f:
                # write back headers
                xs = x[0].split(',')
                f.write(','.join(xs[:icol]))
                for col in ['t','s','p','v','i']:
                    f.write(','.join([col + str(j+1) for j in range(nreadings)]))
                f.write('\n')
                for i, row in enumerate(x[1:]):
                    xs = row.split(',')
                    f.write(','.join(xs[:icol]))
                    fw = np.array(xs[icol:])
                    fw_pad = fw.reshape((5, -1))
                    fw_padded = np.zeros((max_length, 5))
                    fw_padded[:fw_pad.shape[0], :] = fw_pad
                    f.write(','.join(fw_padded.flatten()) + '\n')

        if fw_in_zip:
            with ZipFile(filename.replace('.csv', '_fw.zip'), 'w') as myzip:
                myzip.write(filename.repleace('.csv', '_fw.csv'))
            os.remove(filename.replace('.csv', '_fw.csv'))

        # reset to idle if we didn't interrupt the sequence
        if self.status != 'stopping':
            self.status = 'idle'

    def run_sequence_async(self, cmd_id=None, **kwargs):
        """Runs the sequence in a separate thread. Can be stopped by 'OhmPi.interrupt()'.
            Additional arguments are passed to run_measurement().

        Parameters
        ----------
        cmd_id : str, optional
            Unique command identifier.
        """

        def func():
            self.run_sequence(**kwargs)

        self.thread = Thread(target=func)
        self.thread.start()
        self.status = 'idle'

    # TODO: we could build a smarter RS-Check by selecting adjacent electrodes based on their locations and try to
    #  isolate electrodes that are responsible for high resistances (ex: AB high, AC low, BC high
    #  -> might be a problem at B (cf what we did with WofE)
    def rs_check(self, tx_volt=5.0, cmd_id=None):
        # TODO: add a default value for rs-check in config.py import it in ohmpi.py and add it in rs_check definition
        """Checks contact resistances.
        Strategy: we just open A and B, measure the current and using vAB set or
        assumed (12V assumed for battery), we compute Rab.

        Parameters
        ----------
        tx_volt : float
            Voltage of the injection.
        cmd_id : str, optional
            Unique command identifier.
        """
        # check pwr is on, if not, let's turn it on
        switch_tx_pwr_off = False
        if self._hw.pwr_state == 'off':
            self._hw.pwr_state = 'on'
            switch_tx_pwr_off = True

        # create custom sequence where MN == AB
        # we only check the electrodes which are in the sequence (not all might be connected)
        if self.sequence is None:
            quads = np.array([[1, 2, 0, 0]], dtype=np.uint32)
        else:
            elec = np.sort(np.unique(self.sequence.flatten()))  # assumed order
            quads = np.vstack([
                elec[:-1],
                elec[1:],
                elec[:-1],
                elec[1:],
            ]).T
        
        # create filename to store RS
        export_path_rs = self.settings['export_path'].replace('.csv', '') \
                         + '_' + datetime.now().strftime('%Y%m%dT%H%M%S') + '_rs.csv'

        # perform RS check
        self.status = 'running'
        self.reset_mux()

        # turn dps_pwr_on if needed
        switch_pwr_off = False
        if self._hw.pwr.pwr_state == 'off':
            self._hw.pwr.pwr_state = 'on'
            switch_pwr_off = True

        # measure all quad of the RS sequence
        for i in range(0, quads.shape[0]):
            quad = quads[i, :]  # quadrupole
            self._hw.switch_mux(electrodes=list(quads[i, :2]), roles=['A', 'B'], state='on')
            self._hw._vab_pulse(duration=0.2, vab=tx_volt)
            current = self._hw.readings[-1, 3]
            vab = self._hw.tx.pwr.voltage
            print(vab, current)
            time.sleep(0.2)

            # compute resistance measured (= contact resistance)
            rab = abs(vab*1000 / current) / 1000 # kOhm
            
            # create a message as dictionnary to be used by the html interface
            msg = {
                'rsdata': {
                    'A': int(quad[0]),
                    'B': int(quad[1]),
                    'rs': np.round(rab, 3),  # in kOhm
                }
            }
            self.data_logger.info(json.dumps(msg))

            # if contact resistance = 0 -> we have a short circuit!!
            if rab < 1e-5:
                msg = f'!!!SHORT CIRCUIT!!! {str(quad):s}: {rab:.3f} kOhm'
                self.exec_logger.warning(msg)

            # save data in a text file
            self.append_and_save(export_path_rs, {
                'A': quad[0],
                'B': quad[1],
                'RS [kOhm]': np.round(rab,3),
            })

            # close mux path and put pin back to GND
            self.switch_mux_off(quad)

        self.status = 'idle'
        if switch_pwr_off:
            self._hw.pwr.pwr_state = 'off'
        
        # if power was off before measurement, let's turn if off
        if switch_tx_pwr_off:
            self._hw.pwr_state = 'off'
    
        # TODO if interrupted, we would need to restore the values
        # TODO or we offer the possibility in 'run_measurement' to have rs_check each time?

    def set_sequence(self, sequence=None, cmd_id=None):
        """Sets the sequence to acquire.

        Parameters
        ----------
        sequence : list of list or array_like
            Sequence of quadrupoles (list of list or array_like).
        cmd_id: str, optional
            Unique command identifier.
        """
        try:
            self.sequence = np.array(sequence).astype(int)
        except Exception as e:
            self.exec_logger.warning(f'Unable to set sequence: {e}')

    def switch_mux_on(self, quadrupole, bypass_check=False, cmd_id=None):
        """Switches on multiplexer relays for given quadrupole.

        Parameters
        ----------
        quadrupole : list of 4 int
            List of 4 integers representing the electrode numbers.
        bypass_check: bool, optional
            Bypasses checks for A==M or A==N or B==M or B==N (i.e. used for rs-check).
        cmd_id : str, optional
            Unique command identifier.
        """
        assert len(quadrupole) == 4
        if (self._hw.tx.pwr.voltage > self._hw.rx._voltage_max) and bypass_check:
            self.exec_logger.warning('Cannot bypass checking electrode roles because tx pwr voltage is over rx maximum voltage')
            self.exec_logger.debug(f'tx pwr voltage: {self._hw.tx.pwr.voltage}, rx max voltage: {self._hw.rx._voltage_max}')
            return False
        else:
            if np.array(quadrupole).all() == np.array([0, 0, 0, 0]).all():  # NOTE: No mux
                return True
            else:
                return self._hw.switch_mux(electrodes=quadrupole, state='on', bypass_check=bypass_check)

    def switch_mux_off(self, quadrupole, cmd_id=None):
        """Switches off multiplexer relays for given quadrupole.

        Parameters
        ----------
        quadrupole : list of 4 int
            List of 4 integers representing the electrode numbers.
        cmd_id : str, optional
            Unique command identifier.
        """
        assert len(quadrupole) == 4
        return self._hw.switch_mux(electrodes=quadrupole, state='off')

    def test_mux(self, activation_time=0.2, mux_id=None, cmd_id=None):
        """Interactive method to test the multiplexer boards.

        Parameters
        ----------
        activation_time : float, optional
            Time in seconds during which the relays are activated.
        mux_id : str, optional
            ID of the mux_board to test.
        cmd_id : str, optional
            Unique command identifier.
        """
        self.reset_mux()  # all mux boards should be reset even if we only want to test one otherwise we might create a shortcut
        if mux_id is None:
            self._hw.test_mux(activation_time=activation_time)
        else:
            self._hw.mux_boards[mux_id].test(activation_time=activation_time)

    def reset_mux(self, cmd_id=None):
        """Switches off all multiplexer relays.

        Parameters
        ----------
        cmd_id : str, optional
            Unique command identifier.
        """
        self._hw.reset_mux()

    def update_settings(self, settings: str, cmd_id=None):
        """Updates acquisition settings from a json file or dictionary.
        Parameters can be:
            - nb_electrodes (number of electrode used, if 4, no MUX needed)
            - injection_duration (in seconds)
            - nb_meas (total number of times the sequence will be run)
            - sequence_delay (delay in second between each sequence run)
            - nb_stack (number of stack for each quadrupole measurement)
            - strategy (injection strategy: constant, vmax, vmin)
            - duty_cycle (injection duty cycle comprised between 0.5 - 1)
            - export_path (path where to export the data, timestamp will be added to filename)

        Parameters
        ----------
        settings : str, dict
            Path to the .json settings file or dictionary of settings.
        cmd_id : str, optional
            Unique command identifier.
        """
        if settings is not None:
            try:
                if isinstance(settings, dict):
                    self.settings.update(settings)
                    if 'sequence' in settings:
                        self.set_sequence(settings['sequence'])
                else:
                    with open(settings) as json_file:
                        dic = json.load(json_file)
                    self.settings.update(dic)
                self.exec_logger.debug('Acquisition parameters updated: ' + str(self.settings))
                self.status = 'idle (acquisition updated)'
            except Exception as e:  # noqa
                self.exec_logger.warning('Unable to update settings.')
                self.status = 'idle (unable to update settings)'
        else:
            self.exec_logger.warning('Settings are missing...')

        if self.settings['export_path'] is None:
            self.settings['export_path'] = os.path.join("data", "measurement.csv")

        if not os.path.isabs(self.settings['export_path']):
            export_dir = os.path.split(os.path.dirname(__file__))[0]
            self.settings['export_path'] = os.path.join(export_dir, self.settings['export_path'])

    def run_inversion(self, survey_names=None, elec_spacing=1, **kwargs):
        """Run a simple 2D inversion using ResIPy (https://gitlab.com/hkex/resipy).
        
        Parameters
        ----------
        survey_names : list of string, optional
            Filenames of the survey to be inverted (including extension).
        elec_spacing : float (optional)
            Electrode spacing in meters. We assume same electrode spacing everywhere. Default is 1 m.
        kwargs : optional
            Additional keyword arguments passed to `resipy.Project.invert()`. For instance
            `reg_mode` == 0 for batch inversion, `reg_mode == 2` for time-lapse inversion.
            See ResIPy document for more information on options available
            (https://hkex.gitlab.io/resipy/).

        Returns
        -------
        xzv : list of dict
            Each dictionnary with key 'x' and 'z' for the centroid of the elements and 'v'
            for the values in resistivity of the elements.
        """
        # check if we have any files to be inverted
        if survey_names is None:
            self.exec_logger.error('No file to invert')
            return []
        
        # check if user didn't provide a single string instead of a list
        if isinstance(survey_names, str):
            survey_names = [survey_names]

        # check kwargs for reg_mode
        if 'reg_mode' in kwargs:
            reg_mode = kwargs['reg_mode']
        else:
            reg_mode = 0
            kwargs['reg_mode'] = 0

        # import resipy if available
        pdir = os.path.dirname(__file__)
        try:
            from scipy.interpolate import griddata  # noqa
            import pandas as pd  #noqa
            import sys
            sys.path.append(os.path.join(pdir, '../../resipy/src/'))
            from resipy import Project  # noqa
        except Exception as e:
            self.exec_logger.error('Cannot import ResIPy, scipy or Pandas, error: ' + str(e))
            return []

        # get absolule filename
        fnames = []
        for survey_name in survey_names:
            fname = os.path.join(self.settings['export_path'], survey_name)
            if os.path.exists(fname):
                fnames.append(fname)
            else:
                self.exec_logger.warning(fname + ' not found')
        
        # define a parser for the "ohmpi" format
        def ohmpiParser(fname):
            df = pd.read_csv(fname)
            df = df.rename(columns={'A': 'a', 'B': 'b', 'M': 'm', 'N': 'n'})
            df['vp'] = df['Vmn [mV]']
            df['i'] = df['I [mA]']
            df['resist'] = df['vp']/df['i']
            df['ip'] = np.nan
            emax = np.max(df[['a', 'b', 'm', 'n']].values)
            elec = np.zeros((emax, 3))
            elec[:, 0] = np.arange(emax) * elec_spacing
            return elec, df[['a','b','m','n','vp','i','resist','ip']]
                
        # run inversion
        self.exec_logger.info('ResIPy: import surveys')
        k = Project(typ='R2')  # invert in a temporary directory that will be erased afterwards
        if len(survey_names) == 1:
            k.createSurvey(fnames[0], parser=ohmpiParser)
        elif len(survey_names) > 0 and reg_mode == 0:
            k.createBatchSurvey(fnames, parser=ohmpiParser)
        elif len(survey_names) > 0 and reg_mode > 0:
            k.createTimeLapseSurvey(fnames, parser=ohmpiParser)
        self.exec_logger.info('ResIPy: generate mesh')
        k.createMesh('trian', cl=elec_spacing/5)
        self.exec_logger.info('ResIPy: invert survey')
        k.invert(param=kwargs)

        # read data and regrid on a regular grid for a plotly contour plot
        self.exec_logger.info('Reading inverted surveys')
        k.getResults()
        xzv = []
        for m in k.meshResults:
            df = m.df
            x = np.linspace(df['X'].min(), df['X'].max(), 20)
            z = np.linspace(df['Z'].min(), df['Z'].max(), 20)
            grid_x, grid_z = np.meshgrid(x, z)
            grid_v = griddata(df[['X', 'Z']].values, df['Resistivity(ohm.m)'].values,
                              (grid_x, grid_z), method='nearest')
            
            # set nan to -1 (hard to parse NaN in JSON)
            inan = np.isnan(grid_v)
            grid_v[inan] = -1

            xzv.append({
                'x': x.tolist(),
                'z': z.tolist(),
                'rho': grid_v.tolist(),
            })
        
        self.data_logger.info(json.dumps(xzv))
        return xzv

    # Properties
    @property
    def sequence(self):
        """Gets sequence"""
        if self._sequence is not None:
            assert isinstance(self._sequence, np.ndarray)
        return self._sequence

    @sequence.setter
    def sequence(self, sequence):
        """Sets sequence"""
        if sequence is not None:
            assert isinstance(sequence, np.ndarray)
        self._sequence = sequence


print(colored(r' ________________________________' + '\n' +
              r'|  _  | | | ||  \/  || ___ \_   _|' + '\n' +
              r'| | | | |_| || .  . || |_/ / | |' + '\n' +
              r'| | | |  _  || |\/| ||  __/  | |' + '\n' +
              r'\ \_/ / | | || |  | || |    _| |_' + '\n' +
              r' \___/\_| |_/\_|  |_/\_|    \___/ ', 'red'))
print('Version:', VERSION)
platform, on_pi = get_platform()

if on_pi:
    print(colored(f'\u2611 Running on {platform}', 'green'))
    # TODO: check model for compatible platforms (exclude Raspberry Pi versions that are not supported...)
    #       and emit a warning otherwise
    if not arm64_imports:
        print(colored(f'Warning: Required packages are missing.\n'
                      f'Please run ./env.sh at command prompt to update your virtual environment\n', 'yellow'))
else:
    print(colored(f'\u26A0 Not running on the Raspberry Pi platform.\nFor simulation purposes only...', 'yellow'))

current_time = datetime.now()
print(f'local date and time : {current_time.strftime("%Y-%m-%d %H:%M:%S")}')
OhmPi.get_deprecated_methods()

# for testing
if __name__ == "__main__":
    ohmpi = OhmPi(settings=OHMPI_CONFIG['settings'])
    if ohmpi.controller is not None:
        ohmpi.controller.loop_forever()