• Rémi's avatar
    update · bd0f215e
    Rémi authored
    bd0f215e
shortcut.R 7.61 KiB
# \\\
# Copyright 2021-2022 Louis Héraut*1
# *1   INRAE, France
#      louis.heraut@inrae.fr
# This file is part of ash R toolbox.
# ash R toolbox is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or (at
# your option) any later version.
# ash R toolbox is distributed in the hope that it will be useful, but 
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
# General Public License for more details.
# You should have received a copy of the GNU General Public License
# along with ash R toolbox.  If not, see <https://www.gnu.org/licenses/>.
# ///
# shortcut.R
## 1. EXTREMES OF VALUE FOR ALL STATION ______________________________
### 1.1. Trend _______________________________________________________
short_trendExtremes = function (list_df2plot, Code, nPeriod_trend, nbp, nCode) {
    # Blank array to store mean of the trend for each
    # station, perdiod and variable
    TrendValue_code = array(rep(1, nPeriod_trend*nbp*nCode),
                            dim=c(nPeriod_trend, nbp, nCode))
    # For all the period
    for (j in 1:nPeriod_trend) {
        # For all the code
        for (k in 1:nCode) {
            # Gets the code
            code = Code[k]
            for (i in 1:nbp) {
                # Extracts the data corresponding to the
                # current variable
                df_data = list_df2plot[[i]]$data
                # Extracts the trend corresponding to the
                # current variable
                df_trend = list_df2plot[[i]]$trend
                # Extracts the type of the variable
                type = list_df2plot[[i]]$type
                alpha = list_df2plot[[i]]$alpha
                # Extracts the data corresponding to the code
                df_data_code = df_data[df_data$code == code,] 
                df_trend_code = df_trend[df_trend$code == code,]
                # Extract start and end of trend periods
                Start = df_trend_code$period_start[j]
                End = df_trend_code$period_end[j]
                # Extracts the corresponding data for the period
                df_data_code_per =
                    df_data_code[df_data_code$Date >= Start 
                                 & df_data_code$Date <= End,]
                # Same for trend
                df_trend_code_per = 
                    df_trend_code[df_trend_code$period_start == Start 
                                  & df_trend_code$period_end == End,]
                # Computes the number of trend analysis selected
7172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
Ntrend = nrow(df_trend_code_per) # If there is more than one trend on the same period if (Ntrend > 1) { # Takes only the first because they are similar df_trend_code_per = df_trend_code_per[1,] } # If it is a flow variable if (type == 'sévérité') { # Computes the mean of the data on the period dataMean = mean(df_data_code_per$Value, na.rm=TRUE) # Normalises the trend value by the mean of the data trendValue = df_trend_code_per$trend / dataMean # If it is a date variable } else if (type == 'saisonnalité') { trendValue = df_trend_code_per$trend } # If the p value is under the threshold if (df_trend_code_per$p <= alpha) { # Stores the mean trend TrendValue_code[j, i, k] = trendValue # Otherwise } else { # Do not stocks it TrendValue_code[j, i, k] = NA } } } } # Compute the min and the max of the mean trend for all the station minTrendValue = apply(TrendValue_code, c(1, 2), min, na.rm=TRUE) maxTrendValue = apply(TrendValue_code, c(1, 2), max, na.rm=TRUE) res = list(min=minTrendValue, max=maxTrendValue) return (res) } ### 1.2. Mean ________________________________________________________ short_meanExtremes = function (list_df2plot, Code, nPeriod_mean, nbp, nCode) { # Blank array to store difference of mean between two periods breakValue_code = array(rep(1, nPeriod_mean*nbp*nCode), dim=c(nPeriod_mean, nbp, nCode)) # Blank array to store mean for a temporary period in order # to compute the difference of mean with a second period dataMeantmp = array(rep(NA, nbp*nCode), dim=c(nbp, nCode)) # For all period of breaking analysis for (j in 1:nPeriod_mean) { # For all the code for (k in 1:nCode) { # Gets the code code = Code[k] # For all variable for (i in 1:nbp) { # Extracts the data corresponding to # the current variable df_data = list_df2plot[[i]]$data # Extract the variable of the plot var = list_df2plot[[i]]$var # Extract the type of the variable to plot type = list_df2plot[[i]]$type # Extracts the data corresponding to the code df_data_code = df_data[df_data$code == code,] # Get the current start and end of the sub period Start_mean = mean_period[[j]][1] End_mean = mean_period[[j]][2]
141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193
# Extract the data corresponding to this sub period df_data_code_per = df_data_code[df_data_code$Date >= Start_mean & df_data_code$Date <= End_mean,] # Min max for the sub period Datemin = min(df_data_code_per$Date) Datemax = max(df_data_code_per$Date) # Mean of the flow over the sub period dataMean = mean(df_data_code_per$Value, na.rm=TRUE) # If this in not the first period if (j > 1) { # Compute the difference of mean Break = dataMean - dataMeantmp[i, k] # Otherwise for the first period } else { # Stocks NA Break = NA } # If it is a flow variable if (type == 'sévérité') { # Normalises the break by the mean of the # initial period breakValue = Break / dataMeantmp[i, k] # If it is a date variable } else if (type == 'saisonnalité') { # Just stocks the break value breakValue = Break } # Stores the result breakValue_code[j, i, k] = breakValue # Stores temporarily the mean of the current period dataMeantmp[i, k] = dataMean } } } # Computes the min and the max of the averaged trend for # all the station minBreakValue = apply(breakValue_code, c(1, 2), min, na.rm=TRUE) maxBreakValue = apply(breakValue_code, c(1, 2), max, na.rm=TRUE) res = list(min=minBreakValue, max=maxBreakValue, value=breakValue_code) return (res) }