An error occurred while loading the file. Please try again.
-
Olivier Kaufmann authored9fffc717
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import datetime
import adafruit_ads1x15.ads1115 as ads # noqa
from adafruit_ads1x15.analog_in import AnalogIn # noqa
from adafruit_ads1x15.ads1x15 import Mode # noqa
from adafruit_mcp230xx.mcp23008 import MCP23008 # noqa
from digitalio import Direction # noqa
from busio import I2C # noqa
from ohmpi.hardware_components.mb_2023_0_X import Tx as Tx_mb_2023
from ohmpi.hardware_components.mb_2023_0_X import Rx as Rx_mb_2023
# hardware characteristics and limitations
# voltages are given in mV, currents in mA, sampling rates in Hz and data_rate in S/s
SPECS = {'rx': {'sampling_rate': {'min': 2., 'default': 10., 'max': 100.},
'data_rate': {'default': 860.},
'bias': {'min': -5000., 'default': 0., 'max': 5000.},
'coef_p2': {'default': 1.00},
'mcp_address': {'default': 0x27},
'voltage_min': {'default': 10.0},
'vmn_hardware_offset' : {'default': 2500.},
},
'tx': {'adc_voltage_min': {'default': 10.}, # Minimum voltage value used in vmin strategy
'adc_voltage_max': {'default': 4500.}, # Maximum voltage on ads1115 used to measure current
'voltage_max': {'min': 0., 'default': 12., 'max': 12.}, # Maximum input voltage
'data_rate': {'default': 860.},
'mcp_address': {'default': 0x21},
'compatible_power_sources': {'default': 'pwr_batt', 'others' : ['dps5005']},
'r_shunt': {'min': 0., 'default': 2.},
'activation_delay': {'default': 0.010}, # Max turn on time of OMRON G5LE-1 5VDC relays
'release_delay': {'default': 0.005}, # Max turn off time of OMRON G5LE-1 5VDC relays = 1ms
}}
# TODO: move low_battery spec in pwr
def _ads_1115_gain_auto(channel): # Make it a class method ?
"""Automatically sets the gain on a channel
Parameters
----------
channel : ads.ADS1x15
Instance of ADS where voltage is measured.
Returns
-------
gain : float
Gain to be applied on ADS1115.
"""
gain = 2 / 3
if (abs(channel.voltage) < 2.048) and (abs(channel.voltage) >= 1.024):
gain = 2
elif (abs(channel.voltage) < 1.024) and (abs(channel.voltage) >= 0.512):
gain = 4
elif (abs(channel.voltage) < 0.512) and (abs(channel.voltage) >= 0.256):
gain = 8
elif abs(channel.voltage) < 0.256:
gain = 16
return gain
class Tx(Tx_mb_2023):
def __init__(self, **kwargs):
super().__init__(**kwargs)
# I2C connexion to MCP23008, for current injection
self.mcp_board = MCP23008(self.connection, address=0x21)
# Initialize LEDs
self.pin4 = self.mcp_board.get_pin(4) # Ohmpi_run
self.pin4.direction = Direction.OUTPUT
self.pin4.value = True
self.pin6 = self.mcp_board.get_pin(6)
self.pin6.direction = Direction.OUTPUT
self.pin6.value = False
self.exec_logger.event(f'{self.board_name}\ttx_init\tend\t{datetime.datetime.utcnow()}')
def inject(self, polarity=1, injection_duration=None):
# add leds?
self.pin6.value=True
Tx_mb_2023.inject(self, polarity=polarity, injection_duration=injection_duration)
self.pin6.value = False
class Rx(Rx_mb_2023):
def __init__(self, **kwargs):
super().__init__(**kwargs)
# I2C connexion to MCP23008, for voltage
self.mcp_board = MCP23008(self.connection, address=kwargs['mcp_address'])
# ADS1115 for voltage measurement (MN)
self._coef_p2 = 1.
# Define default DG411 gain
self._dg411_gain = 1/2
# Define pins for DG411
self.pin_DG0 = self.mcp_board.get_pin(0)
self.pin_DG0.direction = Direction.OUTPUT
self.pin_DG1 = self.mcp_board.get_pin(1)
self.pin_DG1.direction = Direction.OUTPUT
self.pin_DG2 = self.mcp_board.get_pin(2)
self.pin_DG2.direction = Direction.OUTPUT
self.pin_DG0.value = True # open
self.pin_DG1.value = True # open gain 1 inactive
self.pin_DG2.value = False # close gain 0.5 active
self.gain = 1/3
# TODO: try to only log this event and not the one created by super()
self.exec_logger.event(f'{self.board_name}\trx_init\tend\t{datetime.datetime.utcnow()}')
def _dg411_gain_auto(self):
if self.voltage < self._vmn_hardware_offset :
self._dg411_gain = 1.
else:
self._dg411_gain = 1/2
@property
def gain(self):
return self._adc_gain*self._dg411_gain
@gain.setter
def gain(self, value):
assert value in [1/3, 2/3]
self._dg411_gain = value / self._adc_gain
if self._dg411_gain == 1.:
self.pin_DG1.value = False # closed gain 1 active
self.pin_DG2.value = True # open gain 0.5 inactive
elif self._dg411_gain == 1/2:
self.pin_DG1.value = True # closed gain 1 active
self.pin_DG2.value = False # open gain 0.5 inactive
def gain_auto(self):
self._dg411_gain_auto()
@property
def voltage(self):
""" Gets the voltage VMN in Volts
"""
self.exec_logger.event(f'{self.board_name}\trx_voltage\tbegin\t{datetime.datetime.utcnow()}')
u = (AnalogIn(self._ads_voltage, ads.P0).voltage * self._coef_p2 * 1000. - self._vmn_hardware_offset) / self._dg411_gain - self._bias # TODO: check how to handle bias and _vmn_hardware_offset
self.exec_logger.event(f'{self.board_name}\trx_voltage\tend\t{datetime.datetime.utcnow()}')
return u