RunModel_CemaNeigeGR4J.Rd 9.79 KiB
\encoding{UTF-8}
\name{RunModel_CemaNeigeGR4J}
\alias{RunModel_CemaNeigeGR4J}
\title{Run with the CemaNeigeGR4J hydrological model}
\usage{
RunModel_CemaNeigeGR4J(InputsModel, RunOptions, Param)
\arguments{
\item{InputsModel}{[object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details}
\item{RunOptions}{[object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details}
\item{Param}{[numeric] vector of 6 (or 8 parameters if \code{IsHyst = TRUE})
\tabular{ll}{                                                                      
GR4J X1      \tab production store capacity [mm]                                          \cr
GR4J X2      \tab intercatchment exchange coefficient [mm/d]                              \cr
GR4J X3      \tab routing store capacity [mm]                                             \cr
GR4J X4      \tab unit hydrograph time constant [d]                                       \cr
CemaNeige X1 \tab weighting coefficient for snow pack thermal state [-]                   \cr
CemaNeige X2 \tab degree-day melt coefficient [mm/°C/d]                                   \cr
CemaNeige X3 \tab (optional) accumulation threshold [mm] (needed if \code{IsHyst = TRUE}) \cr
CemaNeige X4 \tab (optional) percentage (between 0 and 1) of annual snowfall defining the melt threshold [-] (needed if \code{IsHyst = TRUE}) \cr
\value{
[list] list containing the function outputs organised as follows:                                         
  \tabular{ll}{                                                                                         
  \emph{$DatesR  }          \tab [POSIXlt] series of dates                                                  \cr
  \emph{$PotEvap }          \tab [numeric] series of input potential evapotranspiration [mm/d]              \cr
  \emph{$Precip  }          \tab [numeric] series of input total precipitation [mm/d]                       \cr
  \emph{$Prod    }          \tab [numeric] series of production store level [mm]                            \cr
  \emph{$Pn      }          \tab [numeric] series of net rainfall [mm/d]                         			      \cr
  \emph{$Ps      }          \tab [numeric] series of the part of Pn filling the production store [mm/d]     \cr
  \emph{$AE      }          \tab [numeric] series of actual evapotranspiration [mm/d]                       \cr
  \emph{$Perc    }          \tab [numeric] series of percolation (PERC) [mm/d]                              \cr
  \emph{$PR      }          \tab [numeric] series of PR=Pn-Ps+Perc [mm/d]                                   \cr
  \emph{$Q9      }          \tab [numeric] series of UH1 outflow (Q9) [mm/d]                                \cr
  \emph{$Q1      }          \tab [numeric] series of UH2 outflow (Q1) [mm/d]                                \cr
  \emph{$Rout    }          \tab [numeric] series of routing store level [mm]                               \cr
  \emph{$Exch    }          \tab [numeric] series of potential semi-exchange between catchments [mm/d]      \cr
  \emph{$AExch1  }          \tab [numeric] series of actual exchange between catchments for branch 1 [mm/d] \cr
  \emph{$AExch2  }          \tab [numeric] series of actual exchange between catchments for branch 2 [mm/d] \cr
  \emph{$AExch   }          \tab [numeric] series of actual exchange between catchments (1+2) [mm/d]        \cr
  \emph{$QR      }          \tab [numeric] series of routing store outflow (QR) [mm/d]                      \cr
  \emph{$QD      }          \tab [numeric] series of direct flow from UH2 after exchange (QD) [mm/d]        \cr
  \emph{$Qsim    }          \tab [numeric] series of simulated discharge [mm/d]                             \cr
  \emph{$CemaNeigeLayers}   \tab [list] list of CemaNeige outputs (1 list per layer)                        \cr
  \emph{$CemaNeigeLayers[[iLayer]]$Pliq         } \tab [numeric] series of liquid precip. [mm/d]                    \cr
  \emph{$CemaNeigeLayers[[iLayer]]$Psol         } \tab [numeric] series of solid precip. [mm/d]                     \cr
  \emph{$CemaNeigeLayers[[iLayer]]$SnowPack     } \tab [numeric] series of snow pack [mm]                           \cr
  \emph{$CemaNeigeLayers[[iLayer]]$ThermalState } \tab [numeric] series of snow pack thermal state [°C]             \cr
  \emph{$CemaNeigeLayers[[iLayer]]$Gratio       } \tab [numeric] series of Gratio [0-1]                             \cr
  \emph{$CemaNeigeLayers[[iLayer]]$PotMelt      } \tab [numeric] series of potential snow melt [mm/d]               \cr
  \emph{$CemaNeigeLayers[[iLayer]]$Melt         } \tab [numeric] series of actual snow melt [mm/d]                  \cr
  \emph{$CemaNeigeLayers[[iLayer]]$PliqAndMelt  } \tab [numeric] series of liquid precip. + actual snow melt [mm/d] \cr
  \emph{$CemaNeigeLayers[[iLayer]]$Temp         } \tab [numeric] series of air temperature [°C]                     \cr     
  \emph{$CemaNeigeLayers[[iLayer]]$Gthreshold   } \tab [numeric] series of melt threshold [mm]                      \cr
  \emph{$CemaNeigeLayers[[iLayer]]$Glocalmax    } \tab [numeric] series of local melt threshold for hysteresis [mm] \cr
  \emph{$StateEnd}                                \tab [numeric] states at the end of the run: \cr\tab store & unit hydrographs levels [mm], CemaNeige states [mm & °C], \cr\tab see \code{\link{CreateIniStates}} for more details                               \cr
7172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
(refer to the provided references or to the package source code for further details on these model outputs) } \description{ Function which performs a single run for the CemaNeige-GR4J daily lumped model over the test period. } \details{ The choice of the CemaNeige version is explained in \code{\link{CreateRunOptions}}. \cr For further details on the model, see the references section. \cr For further details on the argument structures and initialisation options, see \code{\link{CreateRunOptions}}. } \examples{ library(airGR) ## loading catchment data data(L0123002) ## preparation of the InputsModel object InputsModel <- CreateInputsModel(FUN_MOD = RunModel_CemaNeigeGR4J, DatesR = BasinObs$DatesR, Precip = BasinObs$P, PotEvap = BasinObs$E, TempMean = BasinObs$T, ZInputs = median(BasinInfo$HypsoData), HypsoData = BasinInfo$HypsoData, NLayers = 5) ## run period selection Ind_Run <- seq(which(format(BasinObs$DatesR, format = "\%Y-\%m-\%d")=="1990-01-01"), which(format(BasinObs$DatesR, format = "\%Y-\%m-\%d")=="1999-12-31")) ## ---- original version of CemaNeige ## preparation of the RunOptions object RunOptions <- CreateRunOptions(FUN_MOD = RunModel_CemaNeigeGR4J, InputsModel = InputsModel, IndPeriod_Run = Ind_Run) ## simulation Param <- c(X1 = 408.774, X2 = 2.646, X3 = 131.264, X4 = 1.174, CNX1 = 0.962, CNX2 = 2.249) OutputsModel <- RunModel_CemaNeigeGR4J(InputsModel = InputsModel, RunOptions = RunOptions, Param = Param) ## results preview plot(OutputsModel, Qobs = BasinObs$Qmm[Ind_Run]) ## efficiency criterion: Nash-Sutcliffe Efficiency InputsCrit <- CreateInputsCrit(FUN_CRIT = ErrorCrit_NSE, InputsModel = InputsModel, RunOptions = RunOptions, obs = BasinObs$Qmm[Ind_Run], varObs = "Q") OutputsCrit <- ErrorCrit_NSE(InputsCrit = InputsCrit, OutputsModel = OutputsModel) ## ---- version of CemaNeige with the Linear Hysteresis ## preparation of the RunOptions object RunOptions <- CreateRunOptions(FUN_MOD = RunModel_CemaNeigeGR4J, InputsModel = InputsModel, IndPeriod_Run = Ind_Run, IsHyst = TRUE) ## simulation Param <- c(X1 = 408.774, X2 = 2.646, X3 = 131.264, X4 = 1.174, CNX1 = 0.962, CNX2 = 2.249, CNX3 = 100, CNX4 = 0.4) OutputsModel <- RunModel_CemaNeigeGR4J(InputsModel = InputsModel, RunOptions = RunOptions, Param = Param) ## results preview plot(OutputsModel, Qobs = BasinObs$Qmm[Ind_Run]) ## efficiency criterion: Nash-Sutcliffe Efficiency
141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179
InputsCrit <- CreateInputsCrit(FUN_CRIT = ErrorCrit_NSE, InputsModel = InputsModel, RunOptions = RunOptions, obs = BasinObs$Qmm[Ind_Run], varObs = "Q") OutputsCrit <- ErrorCrit_NSE(InputsCrit = InputsCrit, OutputsModel = OutputsModel) } \author{ Laurent Coron, Audrey Valéry, Claude Michel, Charles Perrin, Vazken Andréassian, Olivier Delaigue } \references{ Perrin, C., C. Michel and V. Andréassian (2003). Improvement of a parsimonious model for streamflow simulation. Journal of Hydrology, 279(1-4), 275-289, doi:10.1016/S0022-1694(03)00225-7. \cr\cr Riboust, P., G. Thirel, N. Le Moine and P. Ribstein (2019). Revisiting a simple degree-day model for integrating satellite data: implementation of SWE-SCA hystereses. Journal of Hydrology and Hydromechanics. doi:10.2478/johh-2018-0004, 67, 1, 70–81. \cr\cr Valéry, A., V. Andréassian and C. Perrin (2014). "As simple as possible but not simpler": what is useful in a temperature-based snow-accounting routine? Part 1 - Comparison of six snow accounting routines on 380 catchments. Journal of Hydrology. doi:10.1016/j.jhydrol.2014.04.059. \cr\cr Valéry, A., V. Andréassian and C. Perrin (2014). "As simple as possible but not simpler": What is useful in a temperature-based snow-accounting routine? Part 2 - Sensitivity analysis of the Cemaneige snow accounting routine on 380 catchments. Journal of Hydrology. doi:10.1016/j.jhydrol.2014.04.058. } \seealso{ \code{\link{RunModel_CemaNeige}}, \code{\link{RunModel_CemaNeigeGR5J}}, \code{\link{RunModel_CemaNeigeGR6J}}, \code{\link{RunModel_GR4J}}, \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}, \code{\link{CreateIniStates}}. }