An error occurred while loading the file. Please try again.
-
Olivier Kaufmann authoredeef78c8e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
from abc import ABC, abstractmethod
import numpy as np
from ohmpi.logging_setup import create_stdout_logger
import time
from threading import Event, Barrier, BrokenBarrierError
class CtlAbstract(ABC):
def __init__(self, **kwargs):
self.board_name = kwargs.pop('board_name', 'unknown CTL hardware')
self.bus = None # TODO: allow for several buses
self.exec_logger = kwargs.pop('exec_logger', None)
if self.exec_logger is None:
self.exec_logger = create_stdout_logger('exec_ctl')
self.soh_logger = kwargs.pop('soh_logger', None)
if self.soh_logger is None:
self.soh_logger = create_stdout_logger('soh_ctl')
self.exec_logger.debug(f'{self.board_name} Ctl initialization')
self._cpu_temp_available = False
self.max_cpu_temp = np.inf
@property
def cpu_temperature(self):
if not self._cpu_temp_available:
self.exec_logger.warning(f'CPU temperature reading is not available for {self.board_name}')
cpu_temp = np.nan
else:
cpu_temp = self._cpu_temp
if cpu_temp > self.max_cpu_temp:
self.soh_logger.warning(f'CPU temperature of {self.board_name} is over the limit!')
return cpu_temp
@property
@abstractmethod
def _cpu_temp(self):
pass
class PwrAbstract(ABC):
def __init__(self, **kwargs):
self.board_name = kwargs.pop('board_name', 'unknown PWR hardware')
self.exec_logger = kwargs.pop('exec_logger', None)
if self.exec_logger is None:
self.exec_logger = create_stdout_logger('exec_mux')
self.soh_logger = kwargs.pop('soh_logger', None)
if self.soh_logger is None:
self.soh_logger = create_stdout_logger('soh_mux')
self.voltage_adjustable = kwargs.pop('voltage_adjustable', False)
self._voltage = np.nan
self._current_adjustable = kwargs.pop('current_adjustable', False)
self._current = np.nan
self._state = 'off'
self._current_min = kwargs.pop('current_min', 0.)
self._current_max = kwargs.pop('current_max', 0.)
self._voltage_min = kwargs.pop('voltage_min', 0.)
self._voltage_max = kwargs.pop('voltage_max', 0.)
self.ctl = kwargs.pop('ctl', None)
@property
@abstractmethod
def current(self):
# add actions to read the DPS current
return self._current
@current.setter
@abstractmethod
def current(self, value, **kwargs):
# add actions to set the DPS current
pass
@abstractmethod
def turn_off(self):
self.exec_logger.debug(f'Switching {self.board_name} off')
self._state = 'off'
@abstractmethod
def turn_on(self):
self.exec_logger.debug(f'Switching {self.board_name} on')
self._state = 'on'
@property
@abstractmethod
def voltage(self):
# add actions to read the DPS voltage
return self._voltage
@voltage.setter
@abstractmethod
def voltage(self, value):
assert isinstance(value, float)
if not self.voltage_adjustable:
self.exec_logger.warning(f'Voltage cannot be set on {self.board_name}...')
else:
assert self._voltage_min < value < self._voltage_max
# add actions to set the DPS voltage
self._voltage = value
class MuxAbstract(ABC):
def __init__(self, **kwargs):
self.board_name = kwargs.pop('board_name', 'unknown MUX hardware')
self.exec_logger = kwargs.pop('exec_logger', None)
if self.exec_logger is None:
self.exec_logger = create_stdout_logger('exec_mux')
self.soh_logger = kwargs.pop('soh_logger', None)
if self.soh_logger is None:
self.soh_logger = create_stdout_logger('soh_mux')
self.board_id = kwargs.pop('id', None)
if self.board_id is None:
self.exec_logger.error(f'MUX {self.board_name} should have an id !')
self.exec_logger.debug(f'MUX {self.board_id} ({self.board_name}) initialization')
self.ctl = kwargs.pop('ctl', None)
cabling = kwargs.pop('cabling', None)
self.cabling = {}
if cabling is not None:
for k, v in cabling.items():
if v[0] == self.board_id:
self.cabling.update({k: (v[1], k[1])})
self.exec_logger.debug(f'{self.board_id} cabling: {self.cabling}')
self.addresses = kwargs.pop('addresses', None)
self._barrier = kwargs.pop('barrier', Barrier(1))
self._activation_delay = kwargs.pop('activation_delay', 0.) # in s
self._release_delay = kwargs.pop('release_delay', 0.) # in s
@abstractmethod
def _get_addresses(self):
pass
@property
def barrier(self):
return self._barrier
@barrier.setter
def barrier(self, value):
assert isinstance(value, Barrier)
self._barrier = value
@abstractmethod
def reset(self):
pass
def switch(self, elec_dict=None, state='off', bypass_check=False): # TODO: generalize for other roles
"""Switch a given list of electrodes with different roles.
Electrodes with a value of 0 will be ignored.
Parameters
----------
elec_dict : dictionary, optional
Dictionary of the form: {role: [list of electrodes]}.
state : str, optional
Either 'on' or 'off'.
bypass_check: bool, optional
Bypasses checks for A==M or A==M or B==M or B==N (i.e. used for rs-check)
"""
status = True
if elec_dict is not None:
self.exec_logger.debug(f'Switching {self.board_name} ')
# check to prevent A == B (SHORT-CIRCUIT)
if 'A' in elec_dict.keys() and 'B' in elec_dict.keys():
out = np.in1d(elec_dict['A'], elec_dict['B'])
if out.any() and state == 'on': # noqa
self.exec_logger.error('Trying to switch on some electrodes with both A and B roles. '
'This would create a short-circuit! Switching aborted.')
status = False
return status
# check that none of M or N are the same as A or B
# as to prevent burning the MN part which cannot take
# the full voltage of the DPS
if 'A' in elec_dict.keys() and 'B' in elec_dict.keys() and 'M' in elec_dict.keys() \
and 'N' in elec_dict.keys():
if bypass_check:
self.exec_logger.debug(f'Bypassing :{bypass_check}')
elif (np.in1d(elec_dict['M'], elec_dict['A']).any() # noqa
or np.in1d(elec_dict['M'], elec_dict['B']).any() # noqa
or np.in1d(elec_dict['N'], elec_dict['A']).any() # noqa
or np.in1d(elec_dict['N'], elec_dict['B']).any()) and state=='on': # noqa
self.exec_logger.error('Trying to switch on some electrodes with both M or N role and A or B role. '
'This could create an over-voltage in the RX! Switching aborted.')
self.barrier.abort()
status = False
return status
# if all ok, then wait for the barrier to open, then switch the electrodes
self.exec_logger.debug(f'{self.board_id} waiting to switch.')
try:
self.barrier.wait()
for role in elec_dict:
for elec in elec_dict[role]:
if elec > 0: # Is this condition related to electrodes to infinity?
if (elec, role) in self.cabling.keys():
self.switch_one(elec, role, state)
status &= True
else:
self.exec_logger.debug(f'{self.board_id} skipping switching {(elec, role)} because it '
f'is not in board cabling.')
status = False
self.exec_logger.debug(f'{self.board_id} switching done.')
except BrokenBarrierError:
self.exec_logger.debug(f'Barrier error {self.board_id} switching aborted.')
status = False
else:
self.exec_logger.warning(f'Missing argument for {self.board_name}.switch: elec_dict is None.')
status = False
if state == 'on':
time.sleep(self._activation_delay)
elif state == 'off':
time.sleep(self._release_delay)
return status
@abstractmethod
def switch_one(self, elec=None, role=None, state=None):
self.exec_logger.debug(f'switching {state} electrode {elec} with role {role}')
def test(self, elec_dict, activation_time=1.):
"""Method to test the multiplexer.
Parameters
----------
elec_dict : dictionary, optional
Dictionary of the form: {role: [list of electrodes]}.
activation_time : float, optional
Time in seconds during which the relays are activated.
"""
self.exec_logger.debug(f'Starting {self.board_name} test...')
self.reset()
for role in elec_dict.keys():
for elec in elec_dict[role]:
self.switch_one(elec, role, 'on')
time.sleep(activation_time)
self.switch_one(elec, role, 'off')
time.sleep(activation_time)
self.exec_logger.debug('Test finished.')
class TxAbstract(ABC):
def __init__(self, **kwargs):
self.board_name = kwargs.pop('board_name', 'unknown TX hardware')
inj_time = kwargs.pop('inj_time', 1.)
self.exec_logger = kwargs.pop('exec_logger', None)
if self.exec_logger is None:
self.exec_logger = create_stdout_logger('exec_tx')
self.soh_logger = kwargs.pop('soh_logger', None)
if self.soh_logger is None:
self.soh_logger = create_stdout_logger('soh_tx')
self.ctl = kwargs.pop('ctl', None)
self.pwr = kwargs.pop('pwr', None)
self._polarity = 0
self._inj_time = None
self._adc_gain = 1.
self.inj_time = inj_time
self.tx_sync = kwargs.pop('tx_sync', Event())
self.exec_logger.debug(f'{self.board_name} TX initialization')
@property
def adc_gain(self):
return self._adc_gain
@adc_gain.setter
def adc_gain(self, value):
self._adc_gain = value
self.exec_logger.debug(f'Setting TX ADC gain to {value}')
@abstractmethod
def adc_gain_auto(self):
pass
@abstractmethod
def current_pulse(self, **kwargs):
pass
@abstractmethod
def inject(self, polarity=1, inj_time=None):
assert polarity in [-1, 0, 1]
if inj_time is None:
inj_time = self._inj_time
if np.abs(polarity) > 0:
self.pwr.turn_on()
self.tx_sync.set()
time.sleep(inj_time)
self.pwr.turn_off()
else:
self.tx_sync.set()
self.pwr.turn_off()
time.sleep(inj_time)
self.tx_sync.clear()
@property
def inj_time(self):
return self._inj_time
@inj_time.setter
def inj_time(self, value):
assert isinstance(value, float)
assert value > 0.
self._inj_time = value
@property
def polarity(self):
return self._polarity
@polarity.setter
@abstractmethod
def polarity(self, polarity):
assert polarity in [-1, 0, 1]
self._polarity = polarity
@property
@abstractmethod
def tx_bat(self):
pass
def voltage_pulse(self, voltage=0., length=None, polarity=1):
""" Generates a square voltage pulse
Parameters
----------
voltage: float, optional
Voltage to apply in volts, tx_v_def is applied if omitted.
length: float, optional
Length of the pulse in seconds
polarity: 1,0,-1
Polarity of the pulse
"""
if length is None:
length = self.inj_time
self.pwr.voltage = voltage
self.exec_logger.debug(f'Voltage pulse of {polarity * self.pwr.voltage:.3f} V for {length:.3f} s')
self.inject(polarity=polarity, inj_time=length)
class RxAbstract(ABC):
def __init__(self, **kwargs):
self.exec_logger = kwargs.pop('exec_logger', None)
if self.exec_logger is None:
self.exec_logger = create_stdout_logger('exec_rx')
self.soh_logger = kwargs.pop('soh_logger', None)
if self.soh_logger is None:
self.soh_logger = create_stdout_logger('soh_rx')
self.ctl = kwargs.pop('ctl', None)
self.board_name = kwargs.pop('board_name', 'unknown RX hardware')
self._sampling_rate = kwargs.pop('sampling_rate', 1) # ms
self.exec_logger.debug(f'{self.board_name} RX initialization')
self._voltage_max = kwargs.pop('voltage_max', 0.)
self._adc_gain = 1.
self._max_sampling_rate = np.inf
self._bias = 0.
@property
def adc_gain(self):
return self._adc_gain
@adc_gain.setter
def adc_gain(self, value):
self._adc_gain = value
self.exec_logger.debug(f'Setting RX ADC gain to {value}')
@abstractmethod
def adc_gain_auto(self):
pass
@property
def sampling_rate(self):
return self._sampling_rate
@sampling_rate.setter
def sampling_rate(self, value):
assert value > 0.
if value > self._max_sampling_rate:
self.exec_logger.warning(f'{self} maximum sampling rate is {self._max_sampling_rate}. '
f'Setting sampling rate to the highest allowed value.')
value = self._max_sampling_rate
self._sampling_rate = value
self.exec_logger.debug(f'Sampling rate set to {value}')
@property
@abstractmethod
def voltage(self):
""" Gets the voltage VMN in Volts
"""
pass