Commit f2145563 authored by Arnaud WATLET's avatar Arnaud WATLET
Browse files

Updates mb_2024_0_2

Showing with 131 additions and 90 deletions
+131 -90
...@@ -7,58 +7,80 @@ from adafruit_ads1x15.ads1x15 import Mode # noqa ...@@ -7,58 +7,80 @@ from adafruit_ads1x15.ads1x15 import Mode # noqa
from adafruit_mcp230xx.mcp23008 import MCP23008 # noqa from adafruit_mcp230xx.mcp23008 import MCP23008 # noqa
from digitalio import Direction # noqa from digitalio import Direction # noqa
import minimalmodbus # noqa import minimalmodbus # noqa
from busio import I2C # noqa
import time import time
import numpy as np import numpy as np
import os import os
from ohmpi.hardware_components import TxAbstract, RxAbstract from ohmpi.hardware_components import TxAbstract, RxAbstract
ctl_name = HARDWARE_CONFIG['ctl'].pop('board_name', 'raspberry_pi') from ohmpi.utils import enforce_specs
ctl_connection = HARDWARE_CONFIG['ctl'].pop('connection', 'i2c') # ctl_name = HARDWARE_CONFIG['ctl'].pop('board_name', 'raspberry_pi')
ctl_module = importlib.import_module(f'ohmpi.hardware_components.{ctl_name}') # ctl_connection = HARDWARE_CONFIG['ctl'].pop('connection', 'i2c')
# ctl_module = importlib.import_module(f'ohmpi.hardware_components.{ctl_name}')
TX_CONFIG = HARDWARE_CONFIG['tx'] #
RX_CONFIG = HARDWARE_CONFIG['rx'] # TX_CONFIG = HARDWARE_CONFIG['tx']
# RX_CONFIG = HARDWARE_CONFIG['rx']
# hardware characteristics and limitations # hardware characteristics and limitations
# *** RX *** # voltages are given in mV, currents in mA, sampling rates in Hz and data_rate in S/s
# ADC for voltage SPECS = {'rx': {'sampling_rate': {'min': 2., 'default': 10., 'max': 100.},
voltage_adc_voltage_min = 10. # mV 'data_rate': {'default': 860.},
voltage_adc_voltage_max = 4500. # mV 'bias': {'min': -5000., 'default': 0., 'max': 5000.},
sampling_rate = 20. # Hz 'coef_p2': {'default': 2.50},
data_rate = 860. # S/s? 'voltage_min': {'default': 10.0},
rx_mcp_board_address = 0x27 },
RX_CONFIG['voltage_min'] = np.min([voltage_adc_voltage_min, RX_CONFIG.pop('voltage_min', np.inf)]) # mV 'tx': {'adc_voltage_min': {'default': 10.}, # Minimum voltage value used in vmin strategy
RX_CONFIG['voltage_max'] = np.min([voltage_adc_voltage_max, RX_CONFIG.pop('voltage_max', np.inf)]) # mV 'adc_voltage_max': {'default': 4500.}, # Maximum voltage on ads1115 used to measure current
RX_CONFIG['sampling_rate'] = RX_CONFIG.pop('sampling_rate', sampling_rate) 'voltage_max': {'min': 0., 'default': 12., 'max': 12.}, # Maximum input voltage
RX_CONFIG['data_rate'] = RX_CONFIG.pop('data_rate', data_rate) 'data_rate': {'default': 860.},
# RX_CONFIG['coef_p2'] = RX_CONFIG.pop('coef_p2', 2.5) 'compatible_power_sources': {'default': 'pwr_batt', 'others' : ['dps5005']},
RX_CONFIG['latency'] = RX_CONFIG.pop('latency', 0.01) 'r_shunt': {'min': 0., 'default': 2. },
RX_CONFIG['bias'] = RX_CONFIG.pop('bias', 0.) 'activation_delay': {'default': 0.005}, # Max turn on time of 211EH relays = 5ms
RX_CONFIG['mcp_board_address'] = TX_CONFIG.pop('mcp_board_address', tx_mcp_board_address) 'release_delay': {'default': 0.001}, # Max turn off time of 211EH relays = 1ms
}}
# *** TX *** # TODO: move low_battery spec in pwr
# ADC for current #
current_adc_voltage_min = 10. # mV # # hardware characteristics and limitations
current_adc_voltage_max = 4500. # mV # # *** RX ***
low_battery = 12. # V (conventional value as it is not measured on this board) # # ADC for voltage
tx_mcp_board_address = 0x21 # # voltage_adc_voltage_min = 10. # mV
# pwr_voltage_max = 12. # V # voltage_adc_voltage_max = 4500. # mV
# pwr_default_voltage = 12. # V # sampling_rate = 20. # Hz
# pwr_switch_on_warmup = 0. # seconds # data_rate = 860. # S/s?
# rx_mcp_board_address = 0x27
TX_CONFIG['current_min'] = np.min([current_adc_voltage_min / (TX_CONFIG['r_shunt'] * 50), # RX_CONFIG['voltage_min'] = np.min([voltage_adc_voltage_min, RX_CONFIG.pop('voltage_min', np.inf)]) # mV
TX_CONFIG.pop('current_min', np.inf)]) # mA # RX_CONFIG['voltage_max'] = np.min([voltage_adc_voltage_max, RX_CONFIG.pop('voltage_max', np.inf)]) # mV
TX_CONFIG['current_max'] = np.min([current_adc_voltage_max / (TX_CONFIG['r_shunt'] * 50), # RX_CONFIG['sampling_rate'] = RX_CONFIG.pop('sampling_rate', sampling_rate)
TX_CONFIG.pop('current_max', np.inf)]) # mA # RX_CONFIG['data_rate'] = RX_CONFIG.pop('data_rate', data_rate)
# TX_CONFIG['voltage_max'] = np.min([pwr_voltage_max, TX_CONFIG.pop('voltage_max', np.inf)]) # V # # RX_CONFIG['coef_p2'] = RX_CONFIG.pop('coef_p2', 2.5)
TX_CONFIG['voltage_max'] = TX_CONFIG.pop('voltage_max', np.inf) # V # RX_CONFIG['latency'] = RX_CONFIG.pop('latency', 0.01)
TX_CONFIG['voltage_min'] = -TX_CONFIG['voltage_max'] # V # RX_CONFIG['bias'] = RX_CONFIG.pop('bias', 0.)
TX_CONFIG['default_voltage'] = np.min([TX_CONFIG.pop('default_voltage', np.inf), TX_CONFIG['voltage_max']]) # V # RX_CONFIG['mcp_board_address'] = TX_CONFIG.pop('mcp_board_address', tx_mcp_board_address)
# TX_CONFIG['pwr_switch_on_warm_up'] = TX_CONFIG.pop('pwr_switch_on_warmup', pwr_switch_on_warmup) #
TX_CONFIG['mcp_board_address'] = TX_CONFIG.pop('mcp_board_address', tx_mcp_board_address) #
TX_CONFIG['low_battery'] = TX_CONFIG.pop('low_battery', low_battery) # # *** TX ***
TX_CONFIG['latency'] = TX_CONFIG.pop('latency', 0.01) # # ADC for current
TX_CONFIG['bias'] = TX_CONFIG.pop('bias', 0.) # current_adc_voltage_min = 10. # mV
# current_adc_voltage_max = 4500. # mV
# low_battery = 12. # V (conventional value as it is not measured on this board)
# tx_mcp_board_address = 0x21 #
# # pwr_voltage_max = 12. # V
# # pwr_default_voltage = 12. # V
# # pwr_switch_on_warmup = 0. # seconds
#
# TX_CONFIG['current_min'] = np.min([current_adc_voltage_min / (TX_CONFIG['r_shunt'] * 50),
# TX_CONFIG.pop('current_min', np.inf)]) # mA
# TX_CONFIG['current_max'] = np.min([current_adc_voltage_max / (TX_CONFIG['r_shunt'] * 50),
# TX_CONFIG.pop('current_max', np.inf)]) # mA
# # TX_CONFIG['voltage_max'] = np.min([pwr_voltage_max, TX_CONFIG.pop('voltage_max', np.inf)]) # V
# TX_CONFIG['voltage_max'] = TX_CONFIG.pop('voltage_max', np.inf) # V
# TX_CONFIG['voltage_min'] = -TX_CONFIG['voltage_max'] # V
# TX_CONFIG['default_voltage'] = np.min([TX_CONFIG.pop('default_voltage', np.inf), TX_CONFIG['voltage_max']]) # V
# # TX_CONFIG['pwr_switch_on_warm_up'] = TX_CONFIG.pop('pwr_switch_on_warmup', pwr_switch_on_warmup)
# TX_CONFIG['mcp_board_address'] = TX_CONFIG.pop('mcp_board_address', tx_mcp_board_address)
# TX_CONFIG['low_battery'] = TX_CONFIG.pop('low_battery', low_battery)
# TX_CONFIG['latency'] = TX_CONFIG.pop('latency', 0.01)
# TX_CONFIG['bias'] = TX_CONFIG.pop('bias', 0.)
def _gain_auto(channel): def _gain_auto(channel):
...@@ -89,25 +111,35 @@ def _gain_auto(channel): ...@@ -89,25 +111,35 @@ def _gain_auto(channel):
class Tx(TxAbstract): class Tx(TxAbstract):
def __init__(self, **kwargs): def __init__(self, **kwargs):
for key in SPECS['tx'].keys():
kwargs = enforce_specs(kwargs, SPECS['tx'], key)
kwargs.update({'board_name': os.path.basename(__file__).rstrip('.py')}) kwargs.update({'board_name': os.path.basename(__file__).rstrip('.py')})
super().__init__(**kwargs) super().__init__(**kwargs)
assert isinstance(self.connection, I2C)
kwargs.update({'pwr': kwargs.pop('pwr', SPECS['tx']['compatible_power_sources']['default'])})
if (kwargs['pwr'] != SPECS['tx']['compatible_power_sources']['default']
and kwargs['pwr'] not in SPECS['tx']['compatible_power_sources']['other']):
self.exec_logger.warning(f'Incompatible power source specified check config')
assert kwargs['pwr'] in SPECS['tx']
# self.pwr = None # TODO: set a list of compatible power system with the tx
self.exec_logger.event(f'{self.board_name}\ttx_init\tbegin\t{datetime.datetime.utcnow()}') self.exec_logger.event(f'{self.board_name}\ttx_init\tbegin\t{datetime.datetime.utcnow()}')
self._voltage = kwargs.pop('voltage', TX_CONFIG['default_voltage']) # self.voltage_max = kwargs['voltage_max'] # TODO: check if used
self._activation_delay = kwargs['activation_delay']
self._release_delay = kwargs['release_delay']
self.voltage_adjustable = False self.voltage_adjustable = False
self.current_adjustable = False self.current_adjustable = False
if self.ctl is None:
self.ctl = ctl_module.Ctl()
# elif isinstance(self.ctl, dict):
# self.ctl = ctl_module.Ctl(**self.ctl)
self.io = self.ctl.interfaces[kwargs.pop('connection', ctl_connection)]
# I2C connexion to MCP23008, for current injection # I2C connexion to MCP23008, for current injection
self.mcp_board = MCP23008(self.io, address=TX_CONFIG['mcp_board_address']) self.mcp_board = MCP23008(self.connection, address=0x21)
# ADS1115 for current measurement (AB) # ADS1115 for current measurement (AB)
self._ads_current_address = 0x48 self._ads_current_address = 0x48
self._ads_current = ads.ADS1115(self.ctl.bus, gain=self.adc_gain, data_rate=860, self._ads_current_data_rate = kwargs['data_rate']
self._ads_current = ads.ADS1115(self.connection, gain=self.adc_gain, data_rate=self._ads_current_data_rate,
address=self._ads_current_address) address=self._ads_current_address)
self._ads_current.mode = Mode.CONTINUOUS self._ads_current.mode = Mode.CONTINUOUS
self.r_shunt = kwargs['r_shunt']
self.adc_voltage_min = kwargs['adc_voltage_min']
self.adc_voltage_max = kwargs['adc_voltage_max']
# Relays for pulse polarity # Relays for pulse polarity
self.pin0 = self.mcp_board.get_pin(0) self.pin0 = self.mcp_board.get_pin(0)
...@@ -115,9 +147,7 @@ class Tx(TxAbstract): ...@@ -115,9 +147,7 @@ class Tx(TxAbstract):
self.pin1 = self.mcp_board.get_pin(1) self.pin1 = self.mcp_board.get_pin(1)
self.pin1.direction = Direction.OUTPUT self.pin1.direction = Direction.OUTPUT
self.polarity = 0 self.polarity = 0
self.adc_gain = 2 / 3 self.gain = 2 / 3
self.pwr = None # TODO: set a list of compatible power system with the tx
# Initialize LEDs # Initialize LEDs
self.pin4 = self.mcp_board.get_pin(4) # Ohmpi_run self.pin4 = self.mcp_board.get_pin(4) # Ohmpi_run
...@@ -129,41 +159,45 @@ class Tx(TxAbstract): ...@@ -129,41 +159,45 @@ class Tx(TxAbstract):
self.exec_logger.event(f'{self.board_name}\ttx_init\tend\t{datetime.datetime.utcnow()}') self.exec_logger.event(f'{self.board_name}\ttx_init\tend\t{datetime.datetime.utcnow()}')
@property @property
def adc_gain(self): def gain(self):
return self._adc_gain return self._adc_gain
@adc_gain.setter @gain.setter
def adc_gain(self, value): def gain(self, value):
assert value in [2/3, 2, 4, 8, 16] assert value in [2/3, 2, 4, 8, 16]
self._adc_gain = value self._adc_gain = value
self._ads_current = ads.ADS1115(self.ctl.bus, gain=self.adc_gain, data_rate=860, self._ads_current = ads.ADS1115(self.connection, gain=self.adc_gain,
data_rate=SPECS['tx']['data_rate']['default'],
address=self._ads_current_address) address=self._ads_current_address)
self._ads_current.mode = Mode.CONTINUOUS self._ads_current.mode = Mode.CONTINUOUS
self.exec_logger.debug(f'Setting TX ADC gain to {value}') self.exec_logger.debug(f'Setting TX ADC gain to {value}')
def adc_gain_auto(self): def _adc_gain_auto(self):
self.exec_logger.event(f'{self.board_name}\ttx_adc_auto_gain\tbegin\t{datetime.datetime.utcnow()}') self.exec_logger.event(f'{self.board_name}\ttx_adc_auto_gain\tbegin\t{datetime.datetime.utcnow()}')
gain = _gain_auto(AnalogIn(self._ads_current, ads.P0)) gain = _gain_auto(AnalogIn(self._ads_current, ads.P0))
self.exec_logger.debug(f'Setting TX ADC gain automatically to {gain}') self.exec_logger.debug(f'Setting TX ADC gain automatically to {gain}')
self.adc_gain = gain self.gain = gain
self.exec_logger.event(f'{self.board_name}\ttx_adc_auto_gain\tend\t{datetime.datetime.utcnow()}') self.exec_logger.event(f'{self.board_name}\ttx_adc_auto_gain\tend\t{datetime.datetime.utcnow()}')
def current_pulse(self, **kwargs): def current_pulse(self, **kwargs):
TxAbstract.current_pulse(self, **kwargs) TxAbstract.current_pulse(self, **kwargs)
self.exec_logger.warning(f'Current pulse is not implemented for the {TX_CONFIG["model"]} board') self.exec_logger.warning(f'Current pulse is not implemented for the {self.board_name} board')
@property @property
def current(self): def current(self):
""" Gets the current IAB in Amps """ Gets the current IAB in Amps
""" """
iab = AnalogIn(self._ads_current, ads.P0).voltage * 1000. / (50 * TX_CONFIG['r_shunt']) # measure current iab = AnalogIn(self._ads_current, ads.P0).voltage * 1000. / (50 * self.r_shunt) # measure current
self.exec_logger.debug(f'Reading TX current: {iab} mA') self.exec_logger.debug(f'Reading TX current: {iab} mA')
return iab return iab
@ current.setter @ current.setter
def current(self, value): def current(self, value):
assert TX_CONFIG['current_min'] <= value <= TX_CONFIG['current_max'] assert self.adc_voltage_min / (50 * self.r_shunt) <= value <= self.adc_voltage_max / (50 * self.r_shunt)
self.exec_logger.warning(f'Current pulse is not implemented for the {TX_CONFIG["model"]} board') self.exec_logger.warning(f'Current pulse is not implemented for the {self.board_name} board')
def gain_auto(self):
self._adc_gain_auto()
def inject(self, polarity=1, injection_duration=None): def inject(self, polarity=1, injection_duration=None):
self.polarity = polarity self.polarity = polarity
...@@ -180,15 +214,15 @@ class Tx(TxAbstract): ...@@ -180,15 +214,15 @@ class Tx(TxAbstract):
if polarity == 1: if polarity == 1:
self.pin0.value = True self.pin0.value = True
self.pin1.value = False self.pin1.value = False
time.sleep(0.005) # Max turn on time of 211EH relays = 5ms time.sleep(self._activation_delay) # Max turn on time of 211EH relays = 5ms
elif polarity == -1: elif polarity == -1:
self.pin0.value = False self.pin0.value = False
self.pin1.value = True self.pin1.value = True
time.sleep(0.005) # Max turn on time of 211EH relays = 5ms time.sleep(self._activation_delay) # Max turn on time of 211EH relays = 5ms
else: else:
self.pin0.value = False self.pin0.value = False
self.pin1.value = False self.pin1.value = False
time.sleep(0.001) # Max turn off time of 211EH relays = 1ms time.sleep(self._release_delay) # Max turn off time of 211EH relays = 1ms
def turn_off(self): def turn_off(self):
self.pwr.turn_off(self) self.pwr.turn_off(self)
...@@ -200,9 +234,9 @@ class Tx(TxAbstract): ...@@ -200,9 +234,9 @@ class Tx(TxAbstract):
def tx_bat(self): def tx_bat(self):
self.soh_logger.warning(f'Cannot get battery voltage on {self.board_name}') self.soh_logger.warning(f'Cannot get battery voltage on {self.board_name}')
self.exec_logger.debug(f'{self.board_name} cannot read battery voltage. Returning default battery voltage.') self.exec_logger.debug(f'{self.board_name} cannot read battery voltage. Returning default battery voltage.')
return TX_CONFIG['low_battery'] return self.pwr.voltage
def voltage_pulse(self, voltage=TX_CONFIG['default_voltage'], length=None, polarity=1): def voltage_pulse(self, voltage=None, length=None, polarity=1):
""" Generates a square voltage pulse """ Generates a square voltage pulse
Parameters Parameters
...@@ -218,7 +252,8 @@ class Tx(TxAbstract): ...@@ -218,7 +252,8 @@ class Tx(TxAbstract):
# self.exec_logger.info(f'injection_duration: {length}') # TODO: delete me # self.exec_logger.info(f'injection_duration: {length}') # TODO: delete me
if length is None: if length is None:
length = self.injection_duration length = self.injection_duration
self.pwr.voltage = voltage if voltage is not None:
self.pwr.voltage = voltage
self.exec_logger.debug(f'Voltage pulse of {polarity*self.pwr.voltage:.3f} V for {length:.3f} s') self.exec_logger.debug(f'Voltage pulse of {polarity*self.pwr.voltage:.3f} V for {length:.3f} s')
self.inject(polarity=polarity, injection_duration=length) self.inject(polarity=polarity, injection_duration=length)
self.exec_logger.event(f'{self.board_name}\ttx_voltage_pulse\tend\t{datetime.datetime.utcnow()}') self.exec_logger.event(f'{self.board_name}\ttx_voltage_pulse\tend\t{datetime.datetime.utcnow()}')
...@@ -226,27 +261,28 @@ class Tx(TxAbstract): ...@@ -226,27 +261,28 @@ class Tx(TxAbstract):
class Rx(RxAbstract): class Rx(RxAbstract):
def __init__(self, **kwargs): def __init__(self, **kwargs):
for key in SPECS['rx'].keys():
kwargs = enforce_specs(kwargs, SPECS['rx'], key)
kwargs.update({'board_name': os.path.basename(__file__).rstrip('.py')}) kwargs.update({'board_name': os.path.basename(__file__).rstrip('.py')})
super().__init__(**kwargs) super().__init__(**kwargs)
assert isinstance(self.connection, I2C)
self.exec_logger.event(f'{self.board_name}\trx_init\tbegin\t{datetime.datetime.utcnow()}') self.exec_logger.event(f'{self.board_name}\trx_init\tbegin\t{datetime.datetime.utcnow()}')
if self.ctl is None:
self.ctl = ctl_module.Ctl()
self.io = self.ctl.interfaces[kwargs.pop('connection', ctl_connection)]
# I2C connexion to MCP23008, for DG411 # I2C connexion to MCP23008, for DG411
self.mcp_board = MCP23008(self.io, address=RX_CONFIG['mcp_board_address']) self.mcp_board = MCP23008(self.connection, address=0x27)
# ADS1115 for voltage measurement (MN) # ADS1115 for voltage measurement (MN)
self._ads_voltage_address = 0x49 self._ads_voltage_address = 0x49
self._adc_gain = 2/3 self._adc_gain = 2/3
self._ads_voltage = ads.ADS1115(self.ctl.bus, gain=self._adc_gain, data_rate=860, self._ads_voltage = ads.ADS1115(self.connection, gain=self._adc_gain,
data_rate=SPECS['rx']['data_rate']['default'],
address=self._ads_voltage_address) address=self._ads_voltage_address)
self._ads_voltage.mode = Mode.CONTINUOUS self._ads_voltage.mode = Mode.CONTINUOUS
self._coef_p2 = kwargs.pop('coef_p2', RX_CONFIG['coef_p2']) self._coef_p2 = kwargs['coef_p2']
self._voltage_max = kwargs.pop('voltage_max', RX_CONFIG['voltage_max']) # self._voltage_max = kwargs['voltage_max']
self._sampling_rate = kwargs.pop('sampling_rate', sampling_rate) self._sampling_rate = kwargs['sampling_rate']
self._latency = kwargs.pop('latency', RX_CONFIG['latency']) self._bias = kwargs['bias']
self._bias = kwargs.pop('bias', RX_CONFIG['bias'])
self.exec_logger.event(f'{self.board_name}\trx_init\tend\t{datetime.datetime.utcnow()}') self.exec_logger.event(f'{self.board_name}\trx_init\tend\t{datetime.datetime.utcnow()}')
self.pin_DG0 = self.mcp_board.get_pin(0) self.pin_DG0 = self.mcp_board.get_pin(0)
...@@ -262,25 +298,30 @@ class Rx(RxAbstract): ...@@ -262,25 +298,30 @@ class Rx(RxAbstract):
self._voltage_gain = 0.5 self._voltage_gain = 0.5
@property @property
def adc_gain(self): def gain(self):
return self._adc_gain return self._adc_gain
@adc_gain.setter @gain.setter
def adc_gain(self, value): def gain(self, value):
assert value in [2/3, 2, 4, 8, 16] assert value in [2/3, 2, 4, 8, 16]
self._adc_gain = value self._adc_gain = value
self._ads_voltage = ads.ADS1115(self.ctl.bus, gain=self.adc_gain, data_rate=860, self._ads_voltage = ads.ADS1115(self.connection, gain=self.adc_gain,
data_rate=SPECS['rx']['data_rate']['default'],
address=self._ads_voltage_address) address=self._ads_voltage_address)
self._ads_voltage.mode = Mode.CONTINUOUS self._ads_voltage.mode = Mode.CONTINUOUS
self.exec_logger.debug(f'Setting RX ADC gain to {value}') self.exec_logger.debug(f'Setting RX ADC gain to {value}')
def adc_gain_auto(self): def _adc_gain_auto(self):
self.exec_logger.event(f'{self.board_name}\trx_adc_auto_gain\tbegin\t{datetime.datetime.utcnow()}') self.exec_logger.event(f'{self.board_name}\trx_adc_auto_gain\tbegin\t{datetime.datetime.utcnow()}')
gain = 2/3 gain_0 = _gain_auto(AnalogIn(self._ads_voltage, ads.P0))
gain_2 = _gain_auto(AnalogIn(self._ads_voltage, ads.P2))
gain = np.min([gain_0, gain_2])
self.exec_logger.debug(f'Setting RX ADC gain automatically to {gain}') self.exec_logger.debug(f'Setting RX ADC gain automatically to {gain}')
self.adc_gain = gain self.gain = gain
self.exec_logger.event(f'{self.board_name}\trx_adc_auto_gain\tend\t{datetime.datetime.utcnow()}') self.exec_logger.event(f'{self.board_name}\trx_adc_auto_gain\tend\t{datetime.datetime.utcnow()}')
def gain_auto(self):
self._adc_gain_auto()
@property @property
def voltage(self): def voltage(self):
""" Gets the voltage VMN in Volts """ Gets the voltage VMN in Volts
......
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment