An error occurred while loading the file. Please try again.
-
Pierre-Antoine Rouby authored34eb3e1d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
import otbApplication as otb
from Common.otb_numpy_proc import to_otb_pipeline
import os
import glob
import numpy as np
import uuid
import xml.etree.ElementTree as ET
import shutil
from itertools import groupby
from Common.geotools import get_query_bbox
from eodag import EODataAccessGateway
def fetch(shp, dt, output_fld, credentials):
bbox = get_query_bbox(shp)
dag = EODataAccessGateway(user_conf_file_path=credentials)
dag.set_preferred_provider("peps")
search_criteria = {
"productType": "S1_SAR_GRD",
"start": dt.split("/")[0],
"end": dt.split("/")[1],
"geom": {"lonmin": bbox[0], "latmin": bbox[1], "lonmax": bbox[2], "latmax": bbox[3]}
}
res = dag.search_all(**search_criteria)
res.filter_property(sensorMode='IW')
if len(res) > 0:
os.makedirs(output_fld, exist_ok=True)
dag.download_all(res, outputs_prefix=output_fld, extract=True)
# return S1GRDPipeline(output_fld)
return
class S1GRDPipeline:
# --- BEGIN SENSOR PROTOTYPE ---
NAME = 'S1-IW-GRD'
VAL_TYPE = otb.ImagePixelType_int16
TMP_TYPE = otb.ImagePixelType_float
PTRN_dir = 'S1*_IW_GRD*/S1*_IW_GRD*.SAFE'
PTRN_ref = '-iw-grd-'
VH_name = 'vh'
PTRN = ['measurement/s1*-iw-grd-vh-*.tiff', 'measurement/s1*-iw-grd-vv-*.tiff']
FEAT_exp = {
'VH': 'im1b1',
'VV': 'im2b1',
'VH_db': '1000*log10(abs(im1b1)+1e-6)',
'VV_db': '1000*log10(abs(im2b1)+1e-6)',
'POL_RATIO': 'im1b1/im2b1'
}
NDT = 0.0
@classmethod
def _check(cls, x):
lst = os.path.basename(cls.PTRN_dir).split('*')
return all([t in os.path.basename(x) for t in lst])
@classmethod
def _img_id(cls, x):
if cls._check(x):
return '_'.join(os.path.basename(x).split('_')[4:7])
else:
return None
@classmethod
def _img_date(cls, x):
if cls._check(x):
return os.path.basename(x).split('_')[4].split('T')[0]
else:
return None
@classmethod
def _check_roi(cls, x, roi, min_surf=0.0):
if cls._check(x):
if os.path.isdir(x):
er = otb.Registry.CreateApplication('ExtractROI')
bnd = glob.glob(os.path.join(x, cls.PTRN[0]))[0]
er.SetParameterString('in', bnd)
er.SetParameterString('mode', 'fit')
er.SetParameterString('mode.fit.im', roi)
try:
er.Execute()
except:
return False
arr = er.GetImageAsNumpyArray('out')
if (np.sum(arr != cls.NDT) / (arr.shape[0] * arr.shape[1])) <= min_surf:
return False
else:
return True
@classmethod
def _check_direction(cls, x):
root = ET.parse(os.path.join(x, 'manifest.safe')).getroot()
for item in root.iter():
if item.tag.endswith('pass'):
if item.text == 'ASCENDING':
return 0
elif item.text == 'DESCENDING':
return 1
else:
return None
@classmethod
def _get_stiched_filename(cls, fn):
tm1 = os.path.basename(fn).split('-')[-4].split('t')[1]
tm2 = os.path.basename(fn).split('-')[-5].split('t')[1]
fn = fn.replace(tm1, 'xxxxxx').replace(tm2, 'xxxxxx')
return fn
def _check_satellite(self, x):
return os.path.basename(x).split('_')[0].lower()
def __init__(self, fld, roi, temp_fld='/tmp', input_date_interval=None, roi_min_surf=0.0,
direction=None, satellite=None):
self.pipe = []
self.files = []
self.types = []
self.out_p = []
self.out_idx = []
self.id = str(uuid.uuid4())
self.folder = os.path.abspath(fld)
self.temp_fld = temp_fld + os.sep + self.id
self.direction = direction
self.satellite = satellite
self.roi = roi
self.image_list = self.parse_folder(self.folder, roi_min_surf)
self.input_dates = [self._img_date(x) for x in self.image_list]
if input_date_interval is not None:
idx = [i for i in range(len(self.input_dates)) if
input_date_interval[0] <= self.input_dates[i] <= input_date_interval[1]]
self.image_list = [self.image_list[i] for i in idx]
self.input_dates = [self.input_dates[i] for i in idx]
for img in self.image_list:
for p in self.PTRN:
ifn, ofn = self.get_file(img, p)
self.append(to_otb_pipeline(ifn), ofn, self.VAL_TYPE, 'out', is_output=True)
def __del__(self):
if os.path.exists(self.temp_fld):
shutil.rmtree(self.temp_fld)
def parse_folder(self, fld, roi_min_surf=0.0):
img_list = [os.path.abspath(x) for x in glob.glob(os.path.join(fld, self.PTRN_dir))
if os.path.isdir(x) and self._check_roi(x, self.roi, roi_min_surf)]
if self.satellite is not None:
img_list = [x for x in img_list if self._check_satellite(x) == self.satellite]
asc, desc = [], []
for x in img_list:
if self._check_direction(x) == 0:
asc.append(x)
elif self._check_direction(x) == 1:
desc.append(x)
out = None
if self.direction == 'ascending':
out = asc
elif self.direction == 'descending':
out = desc
elif self.direction == None:
if len(asc) >= len(desc):
self.direction = 'ascending'
out = asc
else:
self.direction = 'descending'
out = desc
print('[INFO] No direction selected, returning majority : ' + self.direction)
return sorted(out, key=lambda x: self._img_id(x))
def get_file(self, img, ptrn):
in_fn = glob.glob(os.path.join(img, ptrn))[0]
out_fn = in_fn.replace(self.folder, '').lstrip(os.sep)
return in_fn, os.path.splitext(out_fn)[0] + '.tiff'
def append(self, app, fname=None, ftype=None, outp=None, is_output=False):
if is_output:
self.out_idx.append(len(self.pipe))
self.pipe.append(app)
self.files.append(fname)
self.types.append(ftype)
self.out_p.append(outp)
def calibrate(self, lut='sigma'):
proc_idx = self.out_idx.copy()
self.out_idx = []
for t in proc_idx:
sarcal = otb.Registry.CreateApplication('SARCalibration')
sarcal.SetParameterInputImage('in', self.pipe[t].GetParameterOutputImage(self.out_p[t]))
sarcal.SetParameterString('lut', lut)
sarcal.Execute()
fn = self.files[t].replace('.tiff', '_calib.tiff')
ty = self.TMP_TYPE
self.append(sarcal, fn, ty, 'out', is_output=True)
def orthorectify(self, dem_fld, geoid=None, grid_spacing=40):
assert(os.path.isdir(dem_fld))
proc_idx = self.out_idx.copy()
self.out_idx = []
for t in proc_idx:
ortho = otb.Registry.CreateApplication('OrthoRectification')
ortho.SetParameterString('elev.dem', dem_fld)
if geoid is not None:
assert (os.path.exists(geoid))
ortho.SetParameterString('elev.geoid', geoid)
ortho.SetParameterInputImage('io.in', self.pipe[t].GetParameterOutputImage(self.out_p[t]))
ortho.SetParameterInt('opt.gridspacing', grid_spacing)
ortho.SetParameterString('outputs.mode', 'orthofit')
ortho.SetParameterString('outputs.ortho', self.roi)
ortho.Execute()
fn = self.files[t].replace('.tiff', '_ortho.tiff')
ty = self.TMP_TYPE
self.append(ortho, fn, ty, 'io.out', is_output=True)
def superimpose(self):
proc_idx = self.out_idx.copy()
self.out_idx = []
for t in proc_idx:
si = otb.Registry.CreateApplication('Superimpose')
si.SetParameterString('inr', self.roi)
si.SetParameterInputImage('inm', self.pipe[t].GetParameterOutputImage(self.out_p[t]))
si.Execute()
fn = self.files[t].replace('.tiff', '_roi.tiff')
self.append(si, fn, self.TMP_TYPE, 'out', is_output=True)
def stitch(self):
proc_idx = self.out_idx.copy()
self.out_idx = []
q = [[self.image_list.index(v) for v in list(i)]
for j, i in groupby(self.image_list, lambda x: self._img_date(x))]
for s in q:
if len(s) == 1:
self.append(self.pipe[proc_idx[2 * s[0]]], self.files[proc_idx[2 * s[0]]],
self.types[proc_idx[2 * s[0]]], self.out_p[proc_idx[2 * s[0]]], is_output=True)
self.append(self.pipe[proc_idx[2 * s[0] + 1]], self.files[proc_idx[2 * s[0] + 1]],
self.types[proc_idx[2 * s[0] + 1]], self.out_p[proc_idx[2 * s[0] + 1]], is_output=True)
else:
for k in range(2):
fn = self._get_stitched_filename(self.files[proc_idx[2*s[0]+k]])
bm = otb.Registry.CreateApplication('BandMathX')
[bm.AddImageToParameterInputImageList('il', self.pipe[proc_idx[2*u+k]].GetParameterOutputImage(self.out_p[proc_idx[2*u+k]])) for u in s]
bm.SetParameterString('exp',
'vmax({' + ';'.join(['im%db1' % (i + 1) for i in range(len(s))]) + '})')
bm.Execute()
self.append(bm, fn, self.types[proc_idx[2*s[0]+k]], 'out', is_output=True)
def multitemp_speckle_filter(self, win_size=3, outcore_on_disk=True):
proc_idx = self.out_idx.copy()
self.out_idx = []
tmp_pipe = []
tmp_fns = []
ty = self.TMP_TYPE
for u in range(2):
oc = otb.Registry.CreateApplication('MultitempFilteringOutcore')
for t in proc_idx[u::2]:
oc.AddImageToParameterInputImageList('inl', self.pipe[t].GetParameterOutputImage(self.out_p[t]))
oc.SetParameterString('wr', str(win_size))
if not outcore_on_disk:
oc.Execute()
oc_idx = len(self.pipe)
self.append(oc)
else:
if not os.path.exists(self.temp_fld):
os.makedirs(self.temp_fld)
oc_fn = os.path.join(self.temp_fld, 'outcore_{}.tif'.format(['vh', 'vv'][u]))
oc.SetParameterString('oc', oc_fn)
oc.ExecuteAndWriteOutput()
for t in proc_idx[u::2]:
smooth = otb.Registry.CreateApplication('Smoothing')
smooth.SetParameterInputImage('in', self.pipe[t].GetParameterOutputImage(self.out_p[t]))
smooth.SetParameterString('type', 'mean')
smooth.SetParameterString('type.mean.radius', str(win_size))
smooth.Execute()
self.append(smooth)
bm = otb.Registry.CreateApplication('BandMath')
if not outcore_on_disk:
bm.AddImageToParameterInputImageList('il', self.pipe[oc_idx].GetParameterOutputImage('oc'))
else:
bm.SetParameterStringList('il', [oc_fn])
bm.AddImageToParameterInputImageList('il', self.pipe[-1].GetParameterOutputImage('out'))
bm.SetParameterString('exp', 'im2b1*im1b1/im1b2')
bm.Execute()
tmp_fns.append(self.files[t].replace('.tiff', '_filt.tiff'))
tmp_pipe.append(bm)
N = int(len(tmp_pipe) / 2)
for i in range(N):
self.append(tmp_pipe[i], tmp_fns[i], ty, 'out', is_output=True)
self.append(tmp_pipe[N + i], tmp_fns[N + i], ty, 'out', is_output=True)
def compute_features(self, feat_list=['VH_db', 'VV_db']):
proc_idx = self.out_idx.copy()
self.out_idx = []
for k in range(0,len(proc_idx),2):
bm = otb.Registry.CreateApplication('BandMathX')
bm.AddImageToParameterInputImageList('il', self.pipe[proc_idx[k]].GetParameterOutputImage(
self.out_p[proc_idx[k]]))
bm.AddImageToParameterInputImageList('il', self.pipe[proc_idx[k+1]].GetParameterOutputImage(
self.out_p[proc_idx[k+1]]))
expr = []
for f in feat_list:
expr.append(self.FEAT_exp[f])
expr = '{' + ';'.join(expr) + '}'
bm.SetParameterString('exp', expr)
bm.Execute()
fn = self.files[proc_idx[k]].replace('-vh', '-feat')
if all(['db' in x for x in feat_list]):
ty = self.VAL_TYPE
else:
ty = self.TMP_TYPE
self.append(bm, fn, ty, 'out', is_output=True)
def write_outputs(self, fld, update_pipe=False, compress=False):
out = []
proc_idx = self.out_idx.copy()
if update_pipe:
self.out_idx = []
for t in proc_idx:
er = otb.Registry.CreateApplication('ExtractROI')
er.SetParameterInputImage('in', self.pipe[t].GetParameterOutputImage(self.out_p[t]))
er.SetParameterString('mode', 'fit')
er.SetParameterString('mode.fit.im', self.roi)
out_file = os.path.join(fld, self.files[t])
if compress:
out_file += '?gdal:co:compress=deflate'
if not os.path.exists(os.path.dirname(out_file)):
os.makedirs(os.path.dirname(out_file))
er.SetParameterString('out', out_file)
er.SetParameterOutputImagePixelType('out', self.types[t])
er.ExecuteAndWriteOutput()
out.append(out_file)
if update_pipe:
self.append(to_otb_pipeline(out_file), self.files[t], self.types[t], 'out', is_output=True)
return out