monthly_synthesis_6_s2_images.py 4.31 KB
Newer Older
Cresson Remi's avatar
Cresson Remi committed
# -*- coding: utf-8 -*-
"""
Copyright (c) 2020-2022 INRAE

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
"""
"""UNet model implementation (monthly synthesis of 6 optical images)"""
from tensorflow.keras import layers
from decloud.models.model import Model
import decloud.preprocessing.constants as constants
from tensorflow import concat
Cresson Remi's avatar
Cresson Remi committed


class monthly_synthesis_6_s2_images(Model):
    def __init__(self, dataset_shapes,
                 dataset_input_keys=["s2_t0", "s2_t1", "s2_t2", "s2_t3", "s2_t4", "s2_t5"],
                 model_output_keys=["s2_target"]):
        super().__init__(dataset_input_keys=dataset_input_keys, model_output_keys=model_output_keys,
                         dataset_shapes=dataset_shapes)

    def get_outputs(self, normalized_inputs):

        # The network
        features = {factor: [] for factor in [1, 2, 4, 8, 16, 32]}
        conv1 = layers.Conv2D(64, 5, 1, activation='relu', name="conv1_relu", padding="same")
        conv2 = layers.Conv2D(128, 3, 2, activation='relu', name="conv2_bn_relu", padding="same")
        conv3 = layers.Conv2D(256, 3, 2, activation='relu', name="conv3_bn_relu", padding="same")
        conv4 = layers.Conv2D(512, 3, 2, activation='relu', name="conv4_bn_relu", padding="same")
        conv5 = layers.Conv2D(512, 3, 2, activation='relu', name="conv5_bn_relu", padding="same")
        conv6 = layers.Conv2D(512, 3, 2, activation='relu', name="conv6_bn_relu", padding="same")
        deconv1 = layers.Conv2DTranspose(512, 3, 2, activation='relu', name="deconv1_bn_relu", padding="same")
        deconv2 = layers.Conv2DTranspose(512, 3, 2, activation='relu', name="deconv2_bn_relu", padding="same")
        deconv3 = layers.Conv2DTranspose(256, 3, 2, activation='relu', name="deconv3_bn_relu", padding="same")
        deconv4 = layers.Conv2DTranspose(128, 3, 2, activation='relu', name="deconv4_bn_relu", padding="same")
        deconv5 = layers.Conv2DTranspose(64, 3, 2, activation='relu', name="deconv5_bn_relu", padding="same")
        conv_final = layers.Conv2D(4, 5, 1, name="s2_estim", padding="same")

        for input_image in ["s2_t0", "s2_t1", "s2_t2", "s2_t3", "s2_t4", "s2_t5"]:
            net = conv1(normalized_inputs[input_image])  # 256
            features[1].append(net)
            net = conv2(net)  # 128
            if self.has_dem():
                net = concat([net, normalized_inputs[constants.DEM_KEY]], axis=-1)
Cresson Remi's avatar
Cresson Remi committed
            features[2].append(net)
            net = conv3(net)  # 64
            features[4].append(net)
            net = conv4(net)  # 32
            features[8].append(net)
            net = conv5(net)  # 16
            features[16].append(net)
            net = conv6(net)  # 8
            features[32].append(net)

        # Decoder
        def _combine(factor, x=None):
            if x is not None:
                features[factor].append(x)
            return concat(features[factor], axis=-1)
Cresson Remi's avatar
Cresson Remi committed

        net = _combine(factor=32)
        net = deconv1(net)  # 16
        net = _combine(factor=16, x=net)
        net = deconv2(net)  # 32
        net = _combine(factor=8, x=net)
        net = deconv3(net)  # 64
        net = _combine(factor=4, x=net)
        net = deconv4(net)  # 128
        net = _combine(factor=2, x=net)
        net = deconv5(net)  # 256
        net = _combine(factor=1, x=net)

        s2_out = conv_final(net)

        return {"s2_target": s2_out}  # key must correspond to the key from the dataset