Commit b15ff07c authored by Cresson Remi's avatar Cresson Remi
Browse files

FIX, REFAC: use f-string and os.path.join() for paths concat

1 merge request!6Checkpoints callbacks fixes
Showing with 10 additions and 6 deletions
+10 -6
......@@ -26,6 +26,7 @@ This scripts summarizes the number of samples that we can get from an Acquisitio
suited for single optical image reconstruction from date SAR/optical pair, for different
parameters of the AcquisitionsLayout
"""
import os
import argparse
import logging
from decloud.acquisitions.sensing_layout import AcquisitionsLayout, S1Acquisition, S2Acquisition
......@@ -139,8 +140,8 @@ for max_s1s2_gap_hours in params.maxgaps1s2_list:
np_counts[pos[0], pos[1]] += nb_samples_in_patch
# Export
out_fn = "count_gap{}_range{}-{}_{}.tif".format(max_s1s2_gap_hours, int_radius, ext_radius, tile_name)
out_fn = system.pathify(params.out_dir) + out_fn
out_fn = f"count_gap{max_s1s2_gap_hours}_range{int_radius}-{ext_radius}_{tile_name}.tif"
out_fn = os.path.join(params.out_dir, out_fn)
logging.info("Saving %s", out_fn)
raster.save_numpy_array_as_raster(ref_fn=ref_fn, np_arr=np_counts, out_fn=out_fn, scale=scale)
......
......@@ -24,6 +24,7 @@ DEALINGS IN THE SOFTWARE.
"""
Analyze the S1 and S2 orbits
"""
import os
import argparse
import numpy as np
import logging
......@@ -80,5 +81,5 @@ for tile_name, tile_handler in th.items():
# Export with pyotb
out = np.add(initialized_raster, histo_array) # this is a pyotb object
out_fn = system.pathify(params.out_dir) + "{}_s1s2gap_hist.tif".format(tile_name)
out_fn = os.path.join(params.out_dir, f"{tile_name}_s1s2gap_hist.tif")
out.write(out_fn)
......@@ -24,6 +24,7 @@ DEALINGS IN THE SOFTWARE.
"""
Compute the number of S1 and S2 images used for each patch.
"""
import os
import argparse
import logging
import numpy as np
......@@ -59,7 +60,7 @@ scale = float(params.patch_size) / float(constants.PATCHSIZE_REF)
for al_bname, al in als:
for tile_name, tile_handler in th.items():
# Output files prefix
out_prefix = system.pathify(params.out_dir) + tile_name + "_" + al_bname
out_prefix = os.join(params.out_dir, tile_name + "_" + al_bname)
# Reference raster grid
ref_fn = tile_handler.s2_images[0].clouds_stats_fn
......@@ -94,6 +95,6 @@ for al_bname, al in als:
# Export
for key in ["s1", "s2"]:
out_fn = "{}_{}_freq.tif".format(out_prefix, key)
out_fn = f"{out_prefix}_{key}_freq.tif"
logging.info("Saving %s", out_fn)
raster.save_numpy_array_as_raster(ref_fn=ref_fn, np_arr=np_counts[key], out_fn=out_fn, scale=scale)
......@@ -24,6 +24,7 @@ DEALINGS IN THE SOFTWARE.
"""
Compute cloud coverage and pixel validity from an input set of tiles
"""
import os
import argparse
import logging
import numpy as np
......@@ -46,7 +47,7 @@ def compute_stats(tile_name, tile_handler):
:param tile_handler: Tile handler instance
"""
ref_fn = tile_handler.s2_images[0].clouds_stats_fn
out_prefix = system.pathify(params.out_dir) + tile_name
out_prefix = os.path.join(params.out_dir, tile_name)
# Statistics
cloud_cov = np.sum(np.multiply(tile_handler.s2_images_validity, tile_handler.s2_images_cloud_coverage), axis=0)
......
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment