Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
% Generated by roxygen2 (4.0.1): do not edit by hand
\encoding{UTF-8}
\name{ErrorCrit_RMSE}
\alias{ErrorCrit_RMSE}
\title{Error criterion based on the RMSE}
\usage{
ErrorCrit_RMSE(InputsCrit, OutputsModel, quiet = FALSE)
}
\arguments{
\item{InputsCrit}{[object of class \emph{InputsCrit}] see \code{\link{CreateInputsCrit}} for details}
\item{OutputsModel}{[object of class \emph{OutputsModel}] see \code{\link{RunModel_GR4J}} or \code{\link{RunModel_CemaNeigeGR4J}} for details}
\item{quiet}{(optional) [boolean] boolean indicating if the function is run in quiet mode or not, default=FALSE}
}
\value{
[list] list containing the function outputs organised as follows:
\tabular{ll}{
\emph{$CritValue } \tab [numeric] value of the criterion \cr
\emph{$CritName } \tab [character] name of the criterion \cr
\emph{$CritBestValue } \tab [numeric] theoretical best criterion value \cr
\emph{$Multiplier } \tab [numeric] integer indicating whether the criterion is indeed an error (+1) or an efficiency (-1) \cr
\emph{$Ind_notcomputed} \tab [numeric] indices of the time-steps where InputsCrit$BoolCrit=FALSE or no data is available \cr
}
}
\description{
Function which computes an error criterion based on the root mean square error (RMSE).
}
\details{
In addition to the criterion value, the function outputs include a multiplier (-1 or +1) which allows
the use of the function for model calibration: the product CritValue*Multiplier is the criterion to be minimised
(e.g. Multiplier=+1 for RMSE, Multiplier=-1 for NSE).
}
\examples{
## see example of the ErrorCrit function
}
\author{
Laurent Coron (June 2014)
}
\seealso{
\code{\link{ErrorCrit_NSE}}, \code{\link{ErrorCrit_KGE}}, \code{\link{ErrorCrit_KGE2}}
}