Newer
Older
Calibration_Michel <- function(InputsModel,
RunOptions,
InputsCrit,
CalibOptions,
FUN_MOD,
FUN_CRIT, # deprecated
FUN_TRANSFO = NULL,
verbose = TRUE) {
FUN_MOD <- match.fun(FUN_MOD)
Delaigue Olivier
committed
if (!missing(FUN_CRIT)) {
FUN_CRIT <- match.fun(FUN_CRIT)
}
if (!is.null(FUN_TRANSFO)) {
FUN_TRANSFO <- match.fun(FUN_TRANSFO)
}
##_____Arguments_check_____________________________________________________________________
if (!inherits(InputsModel, "InputsModel")) {
Delaigue Olivier
committed
stop("'InputsModel' must be of class 'InputsModel'")
}
if (!inherits(RunOptions, "RunOptions")) {
Delaigue Olivier
committed
stop("'RunOptions' must be of class 'RunOptions'")
}
if (!inherits(InputsCrit, "InputsCrit")) {
Delaigue Olivier
committed
stop("'InputsCrit' must be of class 'InputsCrit'")
}
if (inherits(InputsCrit, "Multi")) {
Delaigue Olivier
committed
stop("'InputsCrit' must be of class 'Single' or 'Compo'")
}
Delaigue Olivier
committed
if (inherits(InputsCrit, "Single")) {
Delaigue Olivier
committed
listVarObs <- InputsCrit$VarObs
Delaigue Olivier
committed
}
if (inherits(InputsCrit, "Compo")) {
Delaigue Olivier
committed
listVarObs <- sapply(InputsCrit, FUN = "[[", "VarObs")
Delaigue Olivier
committed
}
if ("SCA" %in% listVarObs & !"Gratio" %in% RunOptions$Outputs_Cal) {
warning("Missing 'Gratio' is automatically added to 'Output_Cal' in 'RunOptions' as it is necessary in the objective function for comparison with SCA")
RunOptions$Outputs_Cal <- c(RunOptions$Outputs_Cal, "Gratio")
}
Delaigue Olivier
committed
if ("SWE" %in% listVarObs & !"SnowPack" %in% RunOptions$Outputs_Cal) {
warning("Missing 'SnowPack' is automatically added to 'Output_Cal' in 'RunOptions' as it is necessary in the objective function for comparison with SWE")
RunOptions$Outputs_Cal <- c(RunOptions$Outputs_Cal, "SnowPack")
}
if (!inherits(CalibOptions, "CalibOptions")) {
Delaigue Olivier
committed
stop("'CalibOptions' must be of class 'CalibOptions'")
}
if (!inherits(CalibOptions, "HBAN")) {
Delaigue Olivier
committed
stop("'CalibOptions' must be of class 'HBAN' if 'Calibration_Michel' is used")
}
if (!missing(FUN_CRIT)) {
warning("argument 'FUN_CRIT' is deprecated. The error criterion function is now automatically get from the 'InputsCrit' object")
##_check_FUN_TRANSFO
if (is.null(FUN_TRANSFO)) {
if (identical(FUN_MOD, RunModel_GR4H) | identical(FUN_MOD, RunModel_CemaNeigeGR4H)) {
FUN1 <- TransfoParam_GR4H
if (identical(FUN_MOD, RunModel_GR5H) | identical(FUN_MOD, RunModel_CemaNeigeGR5H)) {
FUN1 <- TransfoParam_GR5H
Hban Mesure
committed
}
if (identical(FUN_MOD, RunModel_GR4J) | identical(FUN_MOD, RunModel_CemaNeigeGR4J)) {
FUN1 <- TransfoParam_GR4J
if (identical(FUN_MOD, RunModel_GR5J) | identical(FUN_MOD, RunModel_CemaNeigeGR5J)) {
FUN1 <- TransfoParam_GR5J
if (identical(FUN_MOD, RunModel_GR6J) | identical(FUN_MOD, RunModel_CemaNeigeGR6J)) {
FUN1 <- TransfoParam_GR6J
if (identical(FUN_MOD, RunModel_GR2M )) {
FUN1 <- TransfoParam_GR2M
if (identical(FUN_MOD, RunModel_GR1A )) {
FUN1 <- TransfoParam_GR1A
##_set_FUN_LAG
if (inherits(CalibOptions, "SD")) {
Delaigue Olivier
committed
FUN_LAG <- TransfoParam_Lag
if (identical(FUN_MOD, RunModel_CemaNeige )) {
Delaigue Olivier
committed
if (inherits(CalibOptions, "hysteresis")) {
Delaigue Olivier
committed
FUN_TRANSFO <- TransfoParam_CemaNeigeHyst
} else {
FUN_TRANSFO <- TransfoParam_CemaNeige
}
if (identical(FUN_MOD, RunModel_GR4H) | identical(FUN_MOD, RunModel_GR5H) |
identical(FUN_MOD, RunModel_GR4J) | identical(FUN_MOD, RunModel_GR5J) | identical(FUN_MOD, RunModel_GR6J)) {
if (!inherits(CalibOptions, "SD")) {
FUN_TRANSFO <- FUN1
} else {
FUN_TRANSFO <- function(ParamIn, Direction) {
Bool <- is.matrix(ParamIn)
if (!Bool) {
ParamIn <- rbind(ParamIn)
}
ParamOut <- NA * ParamIn
NParam <- ncol(ParamIn)
ParamOut[, 2:NParam] <- FUN1(ParamIn[, 2:NParam], Direction)
ParamOut[, 1 ] <- FUN_LAG(as.matrix(ParamIn[, 1]), Direction)
if (!Bool) {
ParamOut <- ParamOut[1, ]
}
return(ParamOut)
}
}
}
Delaigue Olivier
committed
if (identical(FUN_MOD, RunModel_CemaNeigeGR4H) | identical(FUN_MOD, RunModel_CemaNeigeGR5H) |
Delaigue Olivier
committed
identical(FUN_MOD, RunModel_CemaNeigeGR4J) | identical(FUN_MOD, RunModel_CemaNeigeGR5J) | identical(FUN_MOD, RunModel_CemaNeigeGR6J)) {
Delaigue Olivier
committed
if (inherits(CalibOptions, "hysteresis")) {
Delaigue Olivier
committed
FUN2 <- TransfoParam_CemaNeigeHyst
} else {
FUN2 <- TransfoParam_CemaNeige
if (inherits(CalibOptions, "hysteresis") & !inherits(CalibOptions, "SD")) {
Delaigue Olivier
committed
FUN_TRANSFO <- function(ParamIn, Direction) {
Bool <- is.matrix(ParamIn)
if (!Bool) {
Delaigue Olivier
committed
ParamIn <- rbind(ParamIn)
}
ParamOut <- NA * ParamIn
NParam <- ncol(ParamIn)
ParamOut[, 1:(NParam-4)] <- FUN1(ParamIn[, 1:(NParam-4)], Direction)
ParamOut[, (NParam-3):NParam ] <- FUN2(ParamIn[, (NParam-3):NParam ], Direction)
if (!Bool) {
Delaigue Olivier
committed
ParamOut <- ParamOut[1, ]
}
return(ParamOut)
}
if (!inherits(CalibOptions, "hysteresis") & !inherits(CalibOptions, "SD")) {
Delaigue Olivier
committed
FUN_TRANSFO <- function(ParamIn, Direction) {
Bool <- is.matrix(ParamIn)
if (!Bool) {
Delaigue Olivier
committed
ParamIn <- rbind(ParamIn)
}
ParamOut <- NA * ParamIn
NParam <- ncol(ParamIn)
ParamOut[, 1:(NParam-2)] <- FUN1(ParamIn[, 1:(NParam-2)], Direction)
ParamOut[, (NParam-1):NParam ] <- FUN2(ParamIn[, (NParam-1):NParam ], Direction)
if (!Bool) {
Delaigue Olivier
committed
ParamOut <- ParamOut[1, ]
}
return(ParamOut)
if (inherits(CalibOptions, "hysteresis") & inherits(CalibOptions, "SD")) {
FUN_TRANSFO <- function(ParamIn, Direction) {
Bool <- is.matrix(ParamIn)
if (!Bool) {
ParamIn <- rbind(ParamIn)
}
ParamOut <- NA * ParamIn
NParam <- ncol(ParamIn)
ParamOut[, 2:(NParam-4)] <- FUN1( ParamIn[, 2:(NParam-4)], Direction)
ParamOut[, (NParam-3):NParam] <- FUN2( ParamIn[, (NParam-3):NParam], Direction)
ParamOut[, 1 ] <- FUN_LAG(as.matrix(ParamIn[, 1 ]), Direction)
if (!Bool) {
ParamOut <- ParamOut[1, ]
}
return(ParamOut)
}
}
if (!inherits(CalibOptions, "hysteresis") & inherits(CalibOptions, "SD")) {
FUN_TRANSFO <- function(ParamIn, Direction) {
Bool <- is.matrix(ParamIn)
if (!Bool) {
ParamIn <- rbind(ParamIn)
}
ParamOut <- NA * ParamIn
NParam <- ncol(ParamIn)
ParamOut[, 2:(NParam-2)] <- FUN1( ParamIn[, 2:(NParam-2)], Direction)
ParamOut[, (NParam-1):NParam] <- FUN2( ParamIn[, (NParam-1):NParam], Direction)
ParamOut[, 1 ] <- FUN_LAG(as.matrix(ParamIn[, 1 ]), Direction)
if (!Bool) {
ParamOut <- ParamOut[1, ]
}
return(ParamOut)
}
}
Delaigue Olivier
committed
if (is.null(FUN_TRANSFO)) {
Delaigue Olivier
committed
stop("'FUN_TRANSFO' was not found (in 'Calibration' function)")
}
##_variables_initialisation
ParamFinalR <- NULL
ParamFinalT <- NULL
CritFinal <- NULL
NRuns <- 0
NIter <- 0
if ("StartParamDistrib" %in% names(CalibOptions)) {
PrefilteringType <- 2
} else {
PrefilteringType <- 1
}
if (PrefilteringType == 1) {
NParam <- ncol(CalibOptions$StartParamList)
}
if (PrefilteringType == 2) {
NParam <- ncol(CalibOptions$StartParamDistrib)
}
if (NParam > 20) {
stop("Calibration_Michel can handle a maximum of 20 parameters")
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
}
HistParamR <- matrix(NA, nrow = 500 * NParam, ncol = NParam)
HistParamT <- matrix(NA, nrow = 500 * NParam, ncol = NParam)
HistCrit <- matrix(NA, nrow = 500 * NParam, ncol = 1)
CritName <- NULL
CritBestValue <- NULL
Multiplier <- NULL
CritOptim <- +1e100
##_temporary_change_of_Outputs_Sim
RunOptions$Outputs_Sim <- RunOptions$Outputs_Cal ### this reduces the size of the matrix exchange with fortran and therefore speeds the calibration
##_____Parameter_Grid_Screening____________________________________________________________
##Definition_of_the_function_creating_all_possible_parameter_sets_from_different_values_for_each_parameter
ProposeCandidatesGrid <- function(DistribParam) {
NewCandidates <- expand.grid(lapply(seq_len(ncol(DistribParamR)), function(x) DistribParam[, x]))
NewCandidates <- unique(NewCandidates) # to avoid duplicates when a parameter is set
Output <- list(NewCandidates = NewCandidates)
}
##Creation_of_new_candidates_______________________________________________
OptimParam <- is.na(CalibOptions$FixedParam)
if (PrefilteringType == 1) {
CandidatesParamR <- CalibOptions$StartParamList
}
if (PrefilteringType == 2) {
DistribParamR <- CalibOptions$StartParamDistrib
DistribParamR[, !OptimParam] <- NA
CandidatesParamR <- ProposeCandidatesGrid(DistribParamR)$NewCandidates
}
##Remplacement_of_non_optimised_values_____________________________________
CandidatesParamR <- apply(CandidatesParamR, 1, function(x) {
x[!OptimParam] <- CalibOptions$FixedParam[!OptimParam]
return(x)
})
if (NParam > 1) {
CandidatesParamR <- t(CandidatesParamR)
} else {
CandidatesParamR <- cbind(CandidatesParamR)
}
##Loop_to_test_the_various_candidates______________________________________
iNewOptim <- 0
Ncandidates <- nrow(CandidatesParamR)
if (verbose & Ncandidates > 1) {
message("List-Screening in progress (", appendLF = FALSE)
}
if (PrefilteringType == 2) {
message("Grid-Screening in progress (", appendLF = FALSE)
message("0%", appendLF = FALSE)
}
for (iNew in 1:nrow(CandidatesParamR)) {
if (verbose & Ncandidates > 1) {
for (k in c(2, 4, 6, 8)) {
if (iNew == round(k / 10 * Ncandidates)) {
message(" ", 10 * k, "%", appendLF = FALSE)
}
}
##Model_run
Param <- CandidatesParamR[iNew, ]
Delaigue Olivier
committed
OutputsModel <- RunModel(InputsModel, RunOptions, Param, FUN_MOD = FUN_MOD)
Delaigue Olivier
committed
##Calibration_criterion_computation
OutputsCrit <- ErrorCrit(InputsCrit, OutputsModel, verbose = FALSE)
if (!is.na(OutputsCrit$CritValue)) {
if (OutputsCrit$CritValue * OutputsCrit$Multiplier < CritOptim) {
CritOptim <- OutputsCrit$CritValue * OutputsCrit$Multiplier
iNewOptim <- iNew
##Storage_of_crit_info
if (is.null(CritName) | is.null(CritBestValue) | is.null(Multiplier)) {
CritName <- OutputsCrit$CritName
CritBestValue <- OutputsCrit$CritBestValue
Multiplier <- OutputsCrit$Multiplier
}
if (verbose & Ncandidates > 1) {
message(" 100%)\n", appendLF = FALSE)
}
##End_of_first_step_Parameter_Screening____________________________________
ParamStartR <- CandidatesParamR[iNewOptim, ]
if (!is.matrix(ParamStartR)) {
ParamStartR <- matrix(ParamStartR, nrow = 1)
}
ParamStartT <- FUN_TRANSFO(ParamStartR, "RT")
CritStart <- CritOptim
NRuns <- NRuns + nrow(CandidatesParamR)
if (verbose) {
if (Ncandidates > 1) {
message(sprintf("\t Screening completed (%s runs)", NRuns))
if (Ncandidates == 1) {
message("\t Starting point for steepest-descent local search:")
message("\t Param = ", paste(sprintf("%8.3f", ParamStartR), collapse = ", "))
message(sprintf("\t Crit. %-12s = %.4f", CritName, CritStart * Multiplier))
}
##Results_archiving________________________________________________________
HistParamR[1, ] <- ParamStartR
HistParamT[1, ] <- ParamStartT
HistCrit[1, ] <- CritStart
##_____Steepest_Descent_Local_Search_______________________________________________________
##Definition_of_the_function_creating_new_parameter_sets_through_a_step_by_step_progression_procedure
ProposeCandidatesLoc <- function(NewParamOptimT, OldParamOptimT, RangesT, OptimParam, Pace) {
##Format_checking
if (nrow(NewParamOptimT) != 1 | nrow(OldParamOptimT) != 1) {
stop("each input set must be a matrix of one single line")
}
if (ncol(NewParamOptimT)!=ncol(OldParamOptimT) | ncol(NewParamOptimT) != length(OptimParam)) {
stop("each input set must have the same number of values")
}
##Proposal_of_new_parameter_sets ###(local search providing 2 * NParam-1 new sets)
NParam <- ncol(NewParamOptimT)
VECT <- NULL
for (I in 1:NParam) {
##We_check_that_the_current_parameter_should_indeed_be_optimised
if (OptimParam[I]) {
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
for (J in 1:2) {
Sign <- 2 * J - 3 #Sign can be equal to -1 or +1
##We_define_the_new_potential_candidate
Add <- TRUE
PotentialCandidateT <- NewParamOptimT
PotentialCandidateT[1, I] <- NewParamOptimT[I] + Sign * Pace
##If_we_exit_the_range_of_possible_values_we_go_back_on_the_boundary
if (PotentialCandidateT[1, I] < RangesT[1, I] ) {
PotentialCandidateT[1,I] <- RangesT[1, I]
}
if (PotentialCandidateT[1, I] > RangesT[2, I]) {
PotentialCandidateT[1,I] <- RangesT[2,I]
}
##We_check_the_set_is_not_outside_the_range_of_possible_values
if (NewParamOptimT[I] == RangesT[1, I] & Sign < 0) {
Add <- FALSE
}
if (NewParamOptimT[I] == RangesT[2, I] & Sign > 0) {
Add <- FALSE
}
##We_check_that_this_set_has_not_been_tested_during_the_last_iteration
if (identical(PotentialCandidateT, OldParamOptimT)) {
Add <- FALSE
}
##We_add_the_candidate_to_our_list
if (Add) {
VECT <- c(VECT, PotentialCandidateT)
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
Output <- NULL
Output$NewCandidatesT <- matrix(VECT, ncol = NParam, byrow = TRUE)
return(Output)
}
##Initialisation_of_variables
if (verbose) {
message("Steepest-descent local search in progress")
}
Pace <- 0.64
PaceDiag <- rep(0, NParam)
CLG <- 0.7^(1 / NParam)
Compt <- 0
CritOptim <- CritStart
##Conversion_of_real_parameter_values
RangesR <- CalibOptions$SearchRanges
RangesT <- FUN_TRANSFO(RangesR, "RT")
NewParamOptimT <- ParamStartT
OldParamOptimT <- ParamStartT
##START_LOOP_ITER_________________________________________________________
for (ITER in 1:(100 * NParam)) {
##Exit_loop_when_Pace_becomes_too_small___________________________________
if (Pace < 0.01) {
break
}
##Creation_of_new_candidates______________________________________________
CandidatesParamT <- ProposeCandidatesLoc(NewParamOptimT, OldParamOptimT, RangesT, OptimParam, Pace)$NewCandidatesT
CandidatesParamR <- FUN_TRANSFO(CandidatesParamT, "TR")
##Remplacement_of_non_optimised_values_____________________________________
CandidatesParamR <- apply(CandidatesParamR, 1, function(x) {
x[!OptimParam] <- CalibOptions$FixedParam[!OptimParam]
return(x)
})
if (NParam > 1) {
CandidatesParamR <- t(CandidatesParamR)
} else {
CandidatesParamR <- cbind(CandidatesParamR)
}
##Loop_to_test_the_various_candidates_____________________________________
iNewOptim <- 0
for (iNew in 1:nrow(CandidatesParamR)) {
Param <- CandidatesParamR[iNew, ]
Delaigue Olivier
committed
OutputsModel <- RunModel(InputsModel, RunOptions, Param, FUN_MOD = FUN_MOD)
OutputsCrit <- ErrorCrit(InputsCrit, OutputsModel, verbose = FALSE)
if (!is.na(OutputsCrit$CritValue)) {
if (OutputsCrit$CritValue * OutputsCrit$Multiplier < CritOptim) {
CritOptim <- OutputsCrit$CritValue * OutputsCrit$Multiplier
NRuns <- NRuns + nrow(CandidatesParamR)
##When_a_progress_has_been_achieved_______________________________________
OldParamOptimT <- NewParamOptimT
NewParamOptimT <- matrix(CandidatesParamT[iNewOptim, 1:NParam], nrow = 1)
Compt <- Compt + 1
##When_necessary_we_increase_the_pace ### if_successive_progress_occur_in_a_row
if (Compt > 2 * NParam) {
Pace <- Pace * 2
Compt <- 0
VectPace <- NewParamOptimT-OldParamOptimT
for (iC in 1:NParam) {
if (OptimParam[iC]) {
PaceDiag[iC] <- CLG * PaceDiag[iC] + (1-CLG) * VectPace[iC]
##When_no_progress_has_been_achieved_we_decrease_the_pace_________________
Pace <- Pace / 2
Compt <- 0
##Test_of_an_additional_candidate_using_diagonal_progress_________________
if (ITER > 4 * NParam) {
NRuns <- NRuns + 1
iNewOptim <- 0
iNew <- 1
CandidatesParamT <- NewParamOptimT+PaceDiag
if (!is.matrix(CandidatesParamT)) {
CandidatesParamT <- matrix(CandidatesParamT, nrow = 1)
}
##If_we_exit_the_range_of_possible_values_we_go_back_on_the_boundary
for (iC in 1:NParam) {
if (OptimParam[iC]) {
if (CandidatesParamT[iNew, iC] < RangesT[1, iC]) {
CandidatesParamT[iNew, iC] <- RangesT[1, iC]
}
if (CandidatesParamT[iNew, iC] > RangesT[2, iC]) {
CandidatesParamT[iNew, iC] <- RangesT[2, iC]
}
}
CandidatesParamR <- FUN_TRANSFO(CandidatesParamT, "TR")
##Model_run
Param <- CandidatesParamR[iNew, ]
Delaigue Olivier
committed
OutputsModel <- RunModel(InputsModel, RunOptions, Param, FUN_MOD = FUN_MOD)
##Calibration_criterion_computation
OutputsCrit <- ErrorCrit(InputsCrit, OutputsModel, verbose = FALSE)
if (OutputsCrit$CritValue * OutputsCrit$Multiplier < CritOptim) {
CritOptim <- OutputsCrit$CritValue * OutputsCrit$Multiplier
iNewOptim <- iNew
}
##When_a_progress_has_been_achieved
if (iNewOptim != 0) {
OldParamOptimT <- NewParamOptimT
NewParamOptimT <- matrix(CandidatesParamT[iNewOptim, 1:NParam], nrow = 1)
}
##Results_archiving_______________________________________________________
NewParamOptimR <- FUN_TRANSFO(NewParamOptimT, "TR")
HistParamR[ITER+1, ] <- NewParamOptimR
HistParamT[ITER+1, ] <- NewParamOptimT
HistCrit[ITER+1, ] <- CritOptim
### if (verbose) { cat(paste("\t Iter ",formatC(ITER,format="d",width=3), " Crit ",formatC(CritOptim,format="f",digits=4), " Pace ",formatC(Pace,format="f",digits=4), "\n",sep=""))}
} ##END_LOOP_ITER_________________________________________________________
ITER <- ITER - 1
##Case_when_the_starting_parameter_set_remains_the_best_solution__________
if (CritOptim == CritStart & verbose) {
message("\t No progress achieved")
}
##End_of_Steepest_Descent_Local_Search____________________________________
ParamFinalR <- NewParamOptimR
ParamFinalT <- NewParamOptimT
CritFinal <- CritOptim
NIter <- 1 + ITER
if (verbose) {
message(sprintf("\t Calibration completed (%s iterations, %s runs)", NIter, NRuns))
message("\t Param = ", paste(sprintf("%8.3f", ParamFinalR), collapse = ", "))
message(sprintf("\t Crit. %-12s = %.4f", CritName, CritFinal * Multiplier))
if (inherits(InputsCrit, "Compo")) {
listweights <- OutputsCrit$CritCompo$MultiCritWeights
listNameCrit <- OutputsCrit$CritCompo$MultiCritNames
msgForm <- paste(sprintf("%.2f", listweights), listNameCrit, sep = " * ", collapse = ", ")
msgForm <- unlist(strsplit(msgForm, split = ","))
msgFormSep <- rep(c(",", ",", ",\n\t\t "), times = ceiling(length(msgForm)/3))[1: length(msgForm)]
msgForm <- paste(msgForm, msgFormSep, sep = "", collapse = "")
msgForm <- gsub("\\,\\\n\\\t\\\t $|\\,$", "", msgForm)
message("\tFormula: sum(", msgForm, ")")
}
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
}
##Results_archiving_______________________________________________________
HistParamR <- cbind(HistParamR[1:NIter, ])
colnames(HistParamR) <- paste0("Param", 1:NParam)
HistParamT <- cbind(HistParamT[1:NIter, ])
colnames(HistParamT) <- paste0("Param", 1:NParam)
HistCrit <- cbind(HistCrit[1:NIter, ])
###colnames(HistCrit) <- paste("HistCrit")
BoolCrit_Actual <- InputsCrit$BoolCrit
BoolCrit_Actual[OutputsCrit$Ind_notcomputed] <- FALSE
MatBoolCrit <- cbind(InputsCrit$BoolCrit, BoolCrit_Actual)
colnames(MatBoolCrit) <- c("BoolCrit_Requested", "BoolCrit_Actual")
##_____Output______________________________________________________________________________
OutputsCalib <- list(ParamFinalR = as.double(ParamFinalR), CritFinal = CritFinal * Multiplier,
NIter = NIter, NRuns = NRuns,
HistParamR = HistParamR, HistCrit = HistCrit * Multiplier,
MatBoolCrit = MatBoolCrit,
CritName = CritName, CritBestValue = CritBestValue)
class(OutputsCalib) <- c("OutputsCalib", "HBAN")
return(OutputsCalib)