RunModel_Lag.Rd 3.81 KiB
\encoding{UTF-8}
\name{RunModel_Lag}
\alias{RunModel_Lag}
\title{Run with the Lag model}
\description{
Function which performs a single run for the Lag model over the test period.
\usage{
RunModel_Lag(InputsModel, RunOptions, Param)
\arguments{
\item{InputsModel}{[object of class \emph{InputsModel}] created with SD model inputs, see \code{\link{CreateInputsModel}} for details. The object should also contain a key \emph{OutputsModel} of class \code{\link{CreateInputsModel}} coming from the simulation of the downstream subcatchment runoff.}
\item{RunOptions}{[object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details}
\item{Param}{[numeric] vector of 1 parameter
  \tabular{ll}{
    Lag \tab Mean flow velocity [m/s]
\value{
[list] see \code{\link{RunModel_GR4J}} or \code{\link{RunModel_CemaNeigeGR4J}} for details.
The list value contains an extra item named \code{QsimDown} which is a copy of \code{InputsModel$OutputsModel$Qsim}, a numeric series of simulated discharge [mm/time step] related to the runoff contribution of the downstream sub-catchment.
\examples{
#####################################################################
## Simulation of a reservoir with a purpose of low-flow mitigation ##
#####################################################################
## Preparation of the InputsModel object
# loading package and catchment data
library(airGR)
data(L0123001)
# The reservoir withdraws 1 m3/s when it's possible considering the flow observed in the basin
Qupstream <- matrix(- unlist(lapply(BasinObs$Qls / 1000 - 1, function(x) {
  min(1, max(0,x, na.rm = TRUE))
})), ncol = 1)
# Except between July and September when the reservoir releases 3 m3/s for low-flow mitigation
month <- as.numeric(format(BasinObs$DatesR,"\%m"))
Qupstream[month >= 7 & month <= 9] <- 3
# Conversion in m3/day
Qupstream <- Qupstream * 86400
# The reservoir is not an upstream subcachment: its areas is NA
BasinAreas <- c(NA, BasinInfo$BasinArea)
# Delay time between the reservoir and the catchment outlet is 2 days and the distance is 150 km
LengthHydro <- 150000
InputsModel <- CreateInputsModel(FUN_MOD = RunModel_GR4J, DatesR = BasinObs$DatesR,
                                 Precip = BasinObs$P, PotEvap = BasinObs$E,
                                 Qupstream = Qupstream, LengthHydro = LengthHydro,
7172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112
BasinAreas = BasinAreas) ## Simulation of the basin with the reservoir influence # Run period selection Ind_Run <- seq(which(format(BasinObs$DatesR, format = "\%Y-\%m-\%d")=="1990-01-01"), which(format(BasinObs$DatesR, format = "\%Y-\%m-\%d")=="1999-12-31")) # Creation of the RunOptions object RunOptions <- CreateRunOptions(FUN_MOD = RunModel_GR4J, InputsModel = InputsModel, IndPeriod_Run = Ind_Run) # Simulation of the runoff of the catchment with a GR4J model Param <- c(X1 = 257.238, X2 = 1.012, X3 = 88.235, X4 = 2.208) OutputsModelDown <- RunModel_GR4J(InputsModel = InputsModel, RunOptions = RunOptions, Param = Param) # With a delay of 2 days for 150 km, the flow velocity is 75 km per day Velocity <- (LengthHydro / 2) / 86400 # Conversion m/day -> m/s # Add the output of the precipitation-runoff model in the InputsModel object InputsModel$OutputsModel <- OutputsModelDown # Run the lag model which routes precipitation-runoff model and upstream flows OutputsModel <- RunModel_Lag(InputsModel = InputsModel, RunOptions = RunOptions, Param = Velocity) ## Results preview of comparison between naturalised (observed) and influenced flow (simulated) plot(OutputsModel, Qobs = OutputsModel$QsimDown) } \author{ Olivier Delaigue, David Dorchies, Guillaume Thirel } \seealso{ \code{\link{RunModel}}, \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}. }