Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
#*************************************************************************************************
#' Creation of the RunOptions object required to the RunModel functions.
#'
#' Users wanting to use FUN_MOD functions that are not included in
#' the package must create their own RunOptions object accordingly.
#'
#' ##### Initialisation options #####
#'
#' The model initialisation options can either be set to a default configuration or be defined by the user.
#'
#' This is done via three vectors: \cr \emph{IndPeriod_WarmUp}, \emph{IniStates}, \emph{IniResLevels}. \cr
#' A default configuration is used for initialisation if these vectors are not defined.
#'
#' (1) Default initialisation options:
#'
#' \itemize{
#' \item \emph{IndPeriod_WarmUp} default setting ensures a one-year warm-up using the time-steps preceding the \emph{IndPeriod_Run}.
#' The actual length of this warm-up might be shorter depending on data availability (no missing value being allowed on model input series).
#'
#' \item \emph{IniStates} and \emph{IniResLevels} are automatically set to initialise all the model states at 0, except for the production and routing stores which are initialised at 50\% of their capacity. This initialisation is made at the very beginning of the model call (i.e. at the beginning of \emph{IndPeriod_WarmUp} or at the beginning of IndPeriod_Run if the warm-up period is disabled).
#' }
#'
#' (2) Customisation of initialisation options:
#'
#' \itemize{
#' \item \emph{IndPeriod_WarmUp} can be used to specify the indices of the warm-up period (within the time-series prepared in InputsModel). \cr
#' - remark 1: for most common cases, indices corresponding to one or several years preceding \emph{IndPeriod_Run} are used (e.g. \emph{IndPeriod_WarmUp <- 1000:1365} and \emph{IndPeriod_Run <- 1366:5000)}. \cr
#' However, it is also possible to perform a long-term initialisation if other indices than the warm-up ones are set in \emph{IndPeriod_WarmUp} (e.g. \emph{IndPeriod_WarmUp <- c( 1:5000 , 1:5000 , 1:5000 ,1000:1365 )}). \cr
#' - remark 2: it is also possible to completely disable the warm-up period when using \emph{IndPeriod_WarmUp <- 0}.
#'
#' \item \emph{IniStates} and \emph{IniResLevels} can be used to specify the initial model states. \cr
#' - remark 1: if \emph{IniStates} is used, all model states must be provided (e.g. 60 floats [mm] are required for GR4J, GR5J and GR6J; 60+2*NLayers floats [mm] are required for CemaNeigeGR4J, CemaNeigeGR5J and CemaNeigeGR6J; see fortran source code for details). \cr
#' - remark 2: in addition to \emph{IniStates}, \emph{IniResLevels} allows to set the filling rate of the production and routing stores for the GR models. For instance for GR4J, GR5J and GR6J: \emph{IniResLevels <- c(0.3,0.5)} should be used to obtain initial fillings of 30\% and 50\% for the production and routing stores, respectively. \emph{IniResLevels} is optional and can only be used if \emph{IniStates} is also defined (the state values corresponding to these two stores in \emph{IniStates} are not used in such case). \cr \cr
#' }
#*************************************************************************************************
#' @title Creation of the RunOptions object required to the RunModel functions
#' @author Laurent Coron (June 2014)
#' @seealso \code{\link{RunModel}}, \code{\link{CreateInputsModel}}, \code{\link{CreateInputsCrit}}, \code{\link{CreateCalibOptions}}
#' @example tests/example_RunModel.R
#' @encoding UTF-8
#' @export
#_FunctionInputs__________________________________________________________________________________
#' @param FUN_MOD [function] hydrological model function (e.g. RunModel_GR4J, RunModel_CemaNeigeGR4J)
#' @param InputsModel [object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details
#' @param IndPeriod_WarmUp (optional) [numeric] index of period to be used for the model warm-up [-]
#' @param IndPeriod_Run [numeric] index of period to be used for the model run [-]
#' @param IniStates (optional) [numeric] vector of initial model states [mm]
#' @param IniResLevels (optional) [numeric] vector of initial filling rates for production and routing stores (2 values between 0 and 1) [-]
#' @param Outputs_Cal (optional) [character] vector giving the outputs needed for the calibration \cr (e.g. c("Qsim")), the least outputs the fastest the calibration
#' @param Outputs_Sim (optional) [character] vector giving the requested outputs \cr (e.g. c("DatesR","Qsim","SnowPack")), default="all"
#' @param RunSnowModule (optional) [boolean] option indicating whether CemaNeige should be activated, default=TRUE
#' @param MeanAnSolidPrecip (optional) [numeric] vector giving the annual mean of average solid precipitation for each layer (computed from InputsModel if not defined) [mm/y]
#' @param quiet (optional) [boolean] boolean indicating if the function is run in quiet mode or not, default=FALSE
#_FunctionOutputs_________________________________________________________________________________
#' @return [list] object of class \emph{RunOptions} containing the data required to evaluate the model outputs; it can include the following:
#' \tabular{ll}{
#' \emph{IndPeriod_WarmUp } \tab [numeric] index of period to be used for the model warm-up [-] \cr
#' \emph{IndPeriod_Run } \tab [numeric] index of period to be used for the model run [-] \cr
#' \emph{IniStates } \tab [numeric] vector of initial model states [mm] \cr
#' \emph{IniResLevels } \tab [numeric] vector of initial filling rates for production and routing stores [-] \cr
#' \emph{Outputs_Cal } \tab [character] character vector giving only the outputs needed for the calibration \cr
#' \emph{Outputs_Sim } \tab [character] character vector giving the requested outputs \cr
#' \emph{RunSnowModule } \tab [boolean] option indicating whether CemaNeige should be activated \cr
#' \emph{MeanAnSolidPrecip} \tab [numeric] vector giving the annual mean of average solid precipitation for each layer [mm/y] \cr
#' }
#**************************************************************************************************'
CreateRunOptions <- function(FUN_MOD,InputsModel,IndPeriod_WarmUp=NULL,IndPeriod_Run,IniStates=NULL,IniResLevels=NULL,
Outputs_Cal=NULL,Outputs_Sim="all",RunSnowModule=TRUE,MeanAnSolidPrecip=NULL,quiet=FALSE){
ObjectClass <- NULL;
##check_FUN_MOD
BOOL <- FALSE;
if(identical(FUN_MOD,RunModel_GR4H)){
ObjectClass <- c(ObjectClass,"GR","hourly");
BOOL <- TRUE;
}
if(identical(FUN_MOD,RunModel_GR4J) | identical(FUN_MOD,RunModel_GR5J) | identical(FUN_MOD,RunModel_GR6J)){
ObjectClass <- c(ObjectClass,"GR","daily");
BOOL <- TRUE;
}
if(identical(FUN_MOD,RunModel_GR2M)){
ObjectClass <- c(ObjectClass,"GR","monthly");
BOOL <- TRUE;
}
if(identical(FUN_MOD,RunModel_GR1A)){
ObjectClass <- c(ObjectClass,"GR","yearly");
BOOL <- TRUE;
}
if(identical(FUN_MOD,RunModel_CemaNeige)){
ObjectClass <- c(ObjectClass,"CemaNeige","daily");
BOOL <- TRUE;
}
if(identical(FUN_MOD,RunModel_CemaNeigeGR4J) | identical(FUN_MOD,RunModel_CemaNeigeGR5J) | identical(FUN_MOD,RunModel_CemaNeigeGR6J)){
ObjectClass <- c(ObjectClass,"GR","CemaNeige","daily");
BOOL <- TRUE;
}
if(!BOOL){ stop("incorrect FUN_MOD for use in CreateRunOptions \n"); return(NULL); }
##check_InputsModel
if(!inherits(InputsModel,"InputsModel")){
stop("InputsModel must be of class 'InputsModel' \n"); return(NULL); }
if("GR" %in% ObjectClass & !inherits(InputsModel,"GR")){
stop("InputsModel must be of class 'GR' \n"); return(NULL); }
if("CemaNeige" %in% ObjectClass & !inherits(InputsModel,"CemaNeige")){
stop("InputsModel must be of class 'CemaNeige' \n"); return(NULL); }
if("hourly" %in% ObjectClass & !inherits(InputsModel,"hourly")){
stop("InputsModel must be of class 'hourly' \n"); return(NULL); }
if("daily" %in% ObjectClass & !inherits(InputsModel,"daily")){
stop("InputsModel must be of class 'daily' \n"); return(NULL); }
if("monthly" %in% ObjectClass & !inherits(InputsModel,"monthly")){
stop("InputsModel must be of class 'monthly' \n"); return(NULL); }
if("yearly" %in% ObjectClass & !inherits(InputsModel,"yearly")){
stop("InputsModel must be of class 'yearly' \n"); return(NULL); }
##check_IndPeriod_Run
if(!is.vector( IndPeriod_Run)){ stop("IndPeriod_Run must be a vector of numeric values \n"); return(NULL); }
if(!is.numeric(IndPeriod_Run)){ stop("IndPeriod_Run must be a vector of numeric values \n"); return(NULL); }
if(identical(as.integer(IndPeriod_Run),as.integer(seq(from=IndPeriod_Run[1],to=tail(IndPeriod_Run,1),by=1)))==FALSE){
stop("IndPeriod_Run must be a continuous sequence of integers \n"); return(NULL); }
if(storage.mode(IndPeriod_Run)!="integer"){ stop("IndPeriod_Run should be of type integer \n"); return(NULL); }
##check_IndPeriod_WarmUp
WTxt <- NULL;
if(is.null(IndPeriod_WarmUp)){
WTxt <- paste(WTxt,"\t Model warm-up period not defined -> default configuration used \n",sep="");
##If_the_run_period_starts_at_the_very_beginning_of_the_time_series
if(IndPeriod_Run[1]==as.integer(1)){
IndPeriod_WarmUp <- as.integer(0);
WTxt <- paste(WTxt,"\t No data were found for model warm-up! \n",sep="");
##We_look_for_the_longest_period_preceeding_the_run_period_with_a_maximum_of_one_year
} else {
TmpDateR <- InputsModel$DatesR[IndPeriod_Run[1]] - 365*24*60*60; ### minimal date to start the warmup
IndPeriod_WarmUp <- which(InputsModel$DatesR==max(InputsModel$DatesR[1],TmpDateR)) : (IndPeriod_Run[1]-1);
if("hourly" %in% ObjectClass){ TimeStep <- as.integer( 60*60); }
if("daily" %in% ObjectClass){ TimeStep <- as.integer( 24*60*60); }
if("monthly" %in% ObjectClass){ TimeStep <- as.integer( 30.44*24*60*60); }
if("yearly" %in% ObjectClass){ TimeStep <- as.integer(365.25*24*60*60); }
if(length(IndPeriod_WarmUp)*TimeStep/(365*24*60*60)>=1){
WTxt <- paste(WTxt,"\t The year preceding the run period is used \n",sep="");
} else {
WTxt <- paste(WTxt,"\t Less than a year (without missing values) was found for model warm-up: \n",sep="");
WTxt <- paste(WTxt,"\t (",length(IndPeriod_WarmUp)," time-steps are used for initialisation) \n",sep="");
}
}
}
if(!is.null(IndPeriod_WarmUp)){
if(!is.vector( IndPeriod_WarmUp)){ stop("IndPeriod_Run must be a vector of numeric values \n"); return(NULL); }
if(!is.numeric(IndPeriod_WarmUp)){ stop("IndPeriod_Run must be a vector of numeric values \n"); return(NULL); }
if(storage.mode(IndPeriod_WarmUp)!="integer"){ stop("IndPeriod_Run should be of type integer \n"); return(NULL); }
if(identical(IndPeriod_WarmUp,as.integer(0))){
WTxt <- paste(WTxt,"\t No warm-up period is used! \n",sep=""); }
if((IndPeriod_Run[1]-1)!=tail(IndPeriod_WarmUp,1) & !identical(IndPeriod_WarmUp,as.integer(0))){
WTxt <- paste(WTxt,"\t Model warm-up period is not directly before the model run period \n",sep=""); }
}
if(!is.null(WTxt) & !quiet){ warning(WTxt); }
##check_IniStates_and_IniResLevels
if(is.null(IniStates) & is.null(IniResLevels) & !quiet){
warning("\t Model states initialisation not defined -> default configuration used \n"); }
if("CemaNeige" %in% ObjectClass){ NLayers <- length(InputsModel$LayerPrecip); } else { NLayers <- 0; }
NState <- NULL;
if("GR" %in% ObjectClass | "CemaNeige" %in% ObjectClass){
if("hourly" %in% ObjectClass){ NState <- 3*24*20; }
if("daily" %in% ObjectClass){ NState <- 3*20 + 2*NLayers; }
if("monthly" %in% ObjectClass){ NState <- 2; }
if("yearly" %in% ObjectClass){ NState <- 1; }
}
if(!is.null(IniStates)){
if(!is.vector( IniStates) ){ stop("IniStates must be a vector of numeric values \n"); return(NULL); }
if(!is.numeric(IniStates) ){ stop("IniStates must be a vector of numeric values \n"); return(NULL); }
if(length(IniStates)!=NState){ stop(paste("The length of IniStates must be ",NState," for the chosen FUN_MOD \n",sep="")); return(NULL); }
} else {
IniStates <- as.double(rep(0.0,NState));
}
if("GR" %in% ObjectClass & ("monthly" %in% ObjectClass | "daily" %in% ObjectClass | "hourly" %in% ObjectClass)){
if(!is.null(IniResLevels)){
if(!is.vector(IniResLevels) ){ stop("IniResLevels must be a vector of numeric values \n"); return(NULL); }
if(!is.numeric(IniResLevels)){ stop("IniResLevels must be a vector of numeric values \n"); return(NULL); }
if(length(IniResLevels)!=2 ) { stop("The length of IniStates must be 2 for the chosen FUN_MOD \n"); return(NULL); }
} else {
IniResLevels <- as.double(c(0.3,0.5));
}
} else {
if(!is.null(IniResLevels)){ stop("IniResLevels can only be used with monthly or daily or hourly GR models \n") }
}
##check_Outputs_Cal_and_Sim
##Outputs_all
Outputs_all <- NULL;
if(identical(FUN_MOD,RunModel_GR4H)){
Outputs_all <- c(Outputs_all,"PotEvap","Precip","Prod","AE","Perc","PR","Q9","Q1","Rout","Exch","AExch","QR","QD","Qsim"); }
if(identical(FUN_MOD,RunModel_GR4J) | identical(FUN_MOD,RunModel_CemaNeigeGR4J)){
Outputs_all <- c(Outputs_all,"PotEvap","Precip","Prod","AE","Perc","PR","Q9","Q1","Rout","Exch","AExch","QR","QD","Qsim"); }
if(identical(FUN_MOD,RunModel_GR5J) | identical(FUN_MOD,RunModel_CemaNeigeGR5J)){
Outputs_all <- c(Outputs_all,"PotEvap","Precip","Prod","AE","Perc","PR","Q9","Q1","Rout","Exch","AExch","QR","QD","Qsim"); }
if(identical(FUN_MOD,RunModel_GR6J) | identical(FUN_MOD,RunModel_CemaNeigeGR6J)){
Outputs_all <- c(Outputs_all,"PotEvap","Precip","Prod","AE","Perc","PR","Q9","Q1","Rout","Exch","AExch","QR","QR1","Exp","QD","Qsim"); }
if(identical(FUN_MOD,RunModel_GR2M)){
Outputs_all <- c(Outputs_all,"PotEvap","Precip","Qsim"); }
if(identical(FUN_MOD,RunModel_GR1A)){
Outputs_all <- c(Outputs_all,"PotEvap","Precip","Qsim"); }
if("CemaNeige" %in% ObjectClass){
Outputs_all <- c(Outputs_all,"Pliq","Psol","SnowPack","ThermalState","Gratio","PotMelt","Melt","PliqAndMelt"); }
##check_Outputs_Sim
if(!is.vector( Outputs_Sim)){ stop("Outputs_Sim must be a vector of characters \n"); return(NULL); }
if(!is.character(Outputs_Sim)){ stop("Outputs_Sim must be a vector of characters \n"); return(NULL); }
if(sum(is.na(Outputs_Sim))!=0){ stop("Outputs_Sim must not contain NA \n"); return(NULL); }
if("all" %in% Outputs_Sim){ Outputs_Sim <- c("DatesR",Outputs_all,"StateEnd"); }
Test <- which(Outputs_Sim %in% c("DatesR",Outputs_all,"StateEnd") == FALSE); if(length(Test)!=0){
stop(paste("Outputs_Sim is incorrectly defined: ",paste(Outputs_Sim[Test],collapse=", ")," not found \n",sep="")); return(NULL); }
Outputs_Sim <- Outputs_Sim[!duplicated(Outputs_Sim)];
##check_Outputs_Cal
if(is.null(Outputs_Cal)){
if("GR" %in% ObjectClass ){ Outputs_Cal <- c("Qsim"); }
if("CemaNeige" %in% ObjectClass ){ Outputs_Cal <- c("all"); }
if("GR" %in% ObjectClass & "CemaNeige" %in% ObjectClass){ Outputs_Cal <- c("PliqAndMelt","Qsim"); }
} else {
if(!is.vector( Outputs_Cal)){ stop("Outputs_Cal must be a vector of characters \n"); return(NULL); }
if(!is.character(Outputs_Cal)){ stop("Outputs_Cal must be a vector of characters \n"); return(NULL); }
if(sum(is.na(Outputs_Cal))!=0){ stop("Outputs_Cal must not contain NA \n"); return(NULL); }
}
if("all" %in% Outputs_Cal){ Outputs_Cal <- c("DatesR",Outputs_all,"StateEnd"); }
Test <- which(Outputs_Cal %in% c("DatesR",Outputs_all,"StateEnd") == FALSE); if(length(Test)!=0){
stop(paste("Outputs_Cal is incorrectly defined: ",paste(Outputs_Cal[Test],collapse=", ")," not found \n",sep="")); return(NULL); }
Outputs_Cal <- Outputs_Cal[!duplicated(Outputs_Cal)];
##check_RunSnowModule
if("CemaNeige" %in% ObjectClass){
if(!is.vector( RunSnowModule)){ stop("RunSnowModule must be a single boolean \n"); return(NULL); }
if(!is.logical(RunSnowModule)){ stop("RunSnowModule must be either TRUE or FALSE \n"); return(NULL); }
if(length(RunSnowModule)!=1 ){ stop("RunSnowModule must be either TRUE or FALSE \n"); return(NULL); }
}
##check_MeanAnSolidPrecip
if("CemaNeige" %in% ObjectClass & is.null(MeanAnSolidPrecip)){
NLayers <- length(InputsModel$LayerPrecip);
SolidPrecip <- NULL; for(iLayer in 1:NLayers){
if(iLayer==1){ SolidPrecip <- InputsModel$LayerFracSolidPrecip[[1]]*InputsModel$LayerPrecip[[iLayer]]/NLayers;
} else { SolidPrecip <- SolidPrecip + InputsModel$LayerFracSolidPrecip[[iLayer]]*InputsModel$LayerPrecip[[iLayer]]/NLayers; } }
Factor <- NULL;
if(inherits(InputsModel,"hourly" )){ Factor <- 365.25*24; }
if(inherits(InputsModel,"daily" )){ Factor <- 365.25; }
if(inherits(InputsModel,"monthly")){ Factor <- 12; }
if(inherits(InputsModel,"yearly" )){ Factor <- 1; }
if(is.null(Factor)){ stop("InputsModel must be of class 'hourly', 'daily', 'monthly' or 'yearly' \n"); return(NULL); }
MeanAnSolidPrecip <- rep(mean(SolidPrecip)*Factor,NLayers); ### default value: same Gseuil for all layers
if(!quiet){ warning("\t MeanAnSolidPrecip not defined -> it was automatically set to c(",paste(round(MeanAnSolidPrecip),collapse=","),") \n"); }
}
if("CemaNeige" %in% ObjectClass & !is.null(MeanAnSolidPrecip)){
if(!is.vector( MeanAnSolidPrecip) ){ stop(paste("MeanAnSolidPrecip must be a vector of numeric values \n",sep="")); return(NULL); }
if(!is.numeric(MeanAnSolidPrecip) ){ stop(paste("MeanAnSolidPrecip must be a vector of numeric values \n",sep="")); return(NULL); }
if(length(MeanAnSolidPrecip)!=NLayers){ stop(paste("MeanAnSolidPrecip must be a numeric vector of length ",NLayers," \n",sep="")); return(NULL); }
}
##check_PliqAndMelt
if(RunSnowModule & "GR" %in% ObjectClass & "CemaNeige" %in% ObjectClass){
if("PliqAndMelt" %in% Outputs_Cal == FALSE & "all" %in% Outputs_Cal == FALSE){
WTxt <- NULL;
WTxt <- paste(WTxt,"\t PliqAndMelt was not defined in Outputs_Cal but is needed to feed the hydrological model with the snow module outputs \n",sep="");
WTxt <- paste(WTxt,"\t -> it was automatically added \n",sep="");
if(!is.null(WTxt) & !quiet){ warning(WTxt); }
Outputs_Cal <- c(Outputs_Cal,"PliqAndMelt"); }
if("PliqAndMelt" %in% Outputs_Sim == FALSE & "all" %in% Outputs_Sim == FALSE){
WTxt <- NULL;
WTxt <- paste(WTxt,"\t PliqAndMelt was not defined in Outputs_Sim but is needed to feed the hydrological model with the snow module outputs \n",sep="");
WTxt <- paste(WTxt,"\t -> it was automatically added \n",sep="");
if(!is.null(WTxt) & !quiet){ warning(WTxt); }
Outputs_Sim <- c(Outputs_Sim,"PliqAndMelt"); }
}
##Create_RunOptions
RunOptions <- list(IndPeriod_WarmUp=IndPeriod_WarmUp,IndPeriod_Run=IndPeriod_Run,IniStates=IniStates,IniResLevels=IniResLevels,
Outputs_Cal=Outputs_Cal,Outputs_Sim=Outputs_Sim);
if("CemaNeige" %in% ObjectClass){
RunOptions <- c(RunOptions,list(RunSnowModule=RunSnowModule,MeanAnSolidPrecip=MeanAnSolidPrecip)); }
class(RunOptions) <- c("RunOptions",ObjectClass);
return(RunOptions);
}