Newer
Older
plot.OutputsModel <- function(x, Qobs = NULL, IndPeriod_Plot = NULL, BasinArea = NULL, which = "all", log_scale = FALSE, verbose = TRUE, ...){
OutputsModel <- x
if(!inherits(OutputsModel, "GR") & !inherits(OutputsModel, "CemaNeige")){
stop(paste("OutputsModel not in the correct format for default plotting \n", sep = ""))
return(NULL)
}
BOOL_Dates <- FALSE;
if("DatesR" %in% names(OutputsModel)){ BOOL_Dates <- TRUE; }
BOOL_Pobs <- FALSE;
if("Precip" %in% names(OutputsModel)){ BOOL_Pobs <- TRUE; }
BOOL_Qsim <- FALSE;
if("Qsim" %in% names(OutputsModel)){ BOOL_Qsim <- TRUE; }
BOOL_Qobs <- FALSE;
if(BOOL_Qsim & length(Qobs) == length(OutputsModel$Qsim)){ if(sum(is.na(Qobs)) != length(Qobs)){ BOOL_Qobs <- TRUE; } }
BOOL_Snow <- FALSE;
if("CemaNeigeLayers" %in% names(OutputsModel)){ if("SnowPack" %in% names(OutputsModel$CemaNeigeLayers[[1]])){ BOOL_Snow <- TRUE; } }
BOOL_Psol <- FALSE;
if("CemaNeigeLayers" %in% names(OutputsModel)){ if("Psol" %in% names(OutputsModel$CemaNeigeLayers[[1]])){ BOOL_Psol <- TRUE; } }
if( is.null( which)){ stop("which must be a vector of character \n"); return(NULL); }
if(!is.vector( which)){ stop("which must be a vector of character \n"); return(NULL); }
if(!is.character(which)){ stop("which must be a vector of character \n"); return(NULL); }
if (any(!which %in% c("all", "Precip", 'Temp', "SnowPack", "Flows", "Regime", "CumFreq", "CorQQ"))) {
stop("Incorrect element found in argument which:\nit can only contain 'all', 'Precip', 'Temp', 'SnowPack', 'Flows', 'Regime', 'CumFreq' or 'CorQQ'")
return(NULL)
}
if (all(which %in% c("Temp", "SnowPack")) & !inherits(OutputsModel, "CemaNeige")) {
stop("Incorrect element found in argument which:\nwithout CemaNeige it can only contain 'all', 'Precip', 'Flows', 'Regime', 'CumFreq' or 'CorQQ'")
return(NULL)
}
if (length(unique(which %in% c("Temp", "SnowPack"))) == 2 & !inherits(OutputsModel, "CemaNeige")) {
warning("Incorrect element found in argument which:\nit can only contain 'all', 'Precip', 'Flows', 'Regime', 'CumFreq' or 'CorQQ'\nwithout CemaNeige 'Temp' and 'SnowPack' are not available")
}
if ("all" %in% which) {
which <- c("Precip", "Temp", "SnowPack", "Flows", "Regime", "CumFreq", "CorQQ")
}
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
if(!BOOL_Dates){
stop(paste("OutputsModel must contain at least DatesR to allow plotting \n", sep = "")); return(NULL); }
if(inherits(OutputsModel, "GR") & !BOOL_Qsim){
stop(paste("OutputsModel must contain at least Qsim to allow plotting \n", sep = "")); return(NULL); }
if(BOOL_Dates){
MyRollMean1 <- function(x, n){
return(filter(x, rep(1/n, n), sides = 2)); }
MyRollMean2 <- function(x, n){
return(filter(c(tail(x, n%/%2), x, x[1:(n%/%2)]), rep(1/n, n), sides = 2)[(n%/%2+1):(length(x)+n%/%2)]); }
BOOL_TS <- FALSE;
TimeStep <- difftime(tail(OutputsModel$DatesR, 1), tail(OutputsModel$DatesR, 2), units = "secs")[[1]];
if(inherits(OutputsModel, "hourly" ) & TimeStep %in% ( 60*60)){ BOOL_TS <- TRUE; NameTS <- "hour" ; plotunit <- "[mm/h]"; formatAxis <- "%m/%Y"; }
if(inherits(OutputsModel, "daily" ) & TimeStep %in% ( 24*60*60)){ BOOL_TS <- TRUE; NameTS <- "day" ; plotunit <- "[mm/d]"; formatAxis <- "%m/%Y"; }
if(inherits(OutputsModel, "monthly") & TimeStep %in% (c(28, 29, 30, 31)*24*60*60)){ BOOL_TS <- TRUE; NameTS <- "month"; plotunit <- "[mm/month]"; formatAxis <- "%m/%Y"; }
if(inherits(OutputsModel, "yearly" ) & TimeStep %in% ( c(365, 366)*24*60*60)){ BOOL_TS <- TRUE; NameTS <- "year" ; plotunit <- "[mm/y]"; formatAxis <- "%Y" ; }
if(!BOOL_TS){ stop(paste("the time step of the model inputs could not be found \n", sep = "")); return(NULL); }
}
if(length(IndPeriod_Plot) == 0){ IndPeriod_Plot <- 1:length(OutputsModel$DatesR); }
if(inherits(OutputsModel, "CemaNeige")){ NLayers <- length(OutputsModel$CemaNeigeLayers); }
PsolLayerMean <- NULL; if(BOOL_Psol){
for(iLayer in 1:NLayers){
if(iLayer == 1){ PsolLayerMean <- OutputsModel$CemaNeigeLayers[[iLayer]]$Psol/NLayers;
} else { PsolLayerMean <- PsolLayerMean + OutputsModel$CemaNeigeLayers[[iLayer]]$Psol/NLayers; } } }
BOOL_QobsZero <- FALSE; if(BOOL_Qobs){ SelectQobsNotZero <- (round(Qobs[IndPeriod_Plot] , 4) != 0); BOOL_QobsZero <- sum(!SelectQobsNotZero, na.rm = TRUE)>0; }
BOOL_QsimZero <- FALSE; if(BOOL_Qsim){ SelectQsimNotZero <- (round(OutputsModel$Qsim[IndPeriod_Plot], 4) != 0); BOOL_QsimZero <- sum(!SelectQsimNotZero, na.rm = TRUE)>0; }
if(BOOL_QobsZero & verbose){ warning("\t zeroes detected in Qobs -> some plots in the log space will not be created using all time-steps \n"); }
if(BOOL_QsimZero & verbose){ warning("\t zeroes detected in Qsim -> some plots in the log space will not be created using all time-steps \n"); }
BOOL_FilterZero <- TRUE;
##Plots_choices
BOOLPLOT_Precip <- ( "Precip" %in% which & BOOL_Pobs )
BOOLPLOT_Temp <- ( "Temp" %in% which & BOOL_Snow )
BOOLPLOT_SnowPack <- ( "SnowPack" %in% which & BOOL_Snow )
BOOLPLOT_Flows <- ( "Flows" %in% which & (BOOL_Qsim | BOOL_Qobs) )
BOOLPLOT_Regime <- ( "Regime" %in% which & BOOL_TS & BOOL_Qsim & (NameTS %in% c("hour", "day", "month")) )
BOOLPLOT_CumFreq <- ( "CumFreq" %in% which & (BOOL_Qsim | BOOL_Qobs) & BOOL_FilterZero )
BOOLPLOT_CorQQ <- ( "CorQQ" %in% which & (BOOL_Qsim & BOOL_Qobs) & BOOL_FilterZero )
##Options
BLOC <- TRUE; if(BLOC){
cexaxis <- 1.0; cexlab <- 0.9; cexleg = 1.0; lwdLine = 1.8; lineX = 2.6; lineY = 2.6; bgleg <- NA
matlayout <- NULL; iPlot <- 0;
Sum1 <- sum(c(BOOLPLOT_Precip, BOOLPLOT_SnowPack, BOOLPLOT_Flows))
Sum2 <- sum(c(BOOLPLOT_Regime, BOOLPLOT_CumFreq, BOOLPLOT_CorQQ))
if(BOOLPLOT_Precip){
matlayout <- rbind(matlayout, c(iPlot+1, iPlot+1, iPlot+1)); iPlot <- iPlot+1; }
if(BOOLPLOT_Temp){
matlayout <- rbind(matlayout, c(iPlot+1, iPlot+1, iPlot+1), c(iPlot+1, iPlot+1, iPlot+1)); iPlot <- iPlot+1; }
if(BOOLPLOT_SnowPack){
matlayout <- rbind(matlayout, c(iPlot+1, iPlot+1, iPlot+1), c(iPlot+1, iPlot+1, iPlot+1)); iPlot <- iPlot+1; }
if(BOOLPLOT_Flows){
matlayout <- rbind(matlayout, c(iPlot+1, iPlot+1, iPlot+1), c(iPlot+1, iPlot+1, iPlot+1)); iPlot <- iPlot+1; }
if((Sum1 >= 1 & Sum2 != 0) | (Sum1 == 0 & Sum2 == 3)){
matlayout <- rbind(matlayout, c(iPlot+1, iPlot+2, iPlot+3), c(iPlot+1, iPlot+2, iPlot+3)); iPlot <- iPlot+3; }
if(Sum1 == 0 & Sum2 == 2){
matlayout <- rbind(matlayout, c(iPlot+1, iPlot+2)); iPlot <- iPlot+2; }
if(Sum1 == 0 & Sum2 == 1){
matlayout <- rbind(matlayout, iPlot+1); iPlot <- iPlot+1; }
iPlotMax <- iPlot;
isRStudio <- Sys.getenv("RSTUDIO") == "1";
if(!isRStudio){
if(Sum1 == 1 & Sum2 == 0){ width = 10; height = 05; }
if(Sum1 == 1 & Sum2 != 0){ width = 10; height = 07; }
if(Sum1 == 2 & Sum2 == 0){ width = 10; height = 05; }
if(Sum1 == 2 & Sum2 != 0){ width = 10; height = 07; }
if(Sum1 == 3 & Sum2 == 0){ width = 10; height = 07; }
if(Sum1 == 3 & Sum2 != 0){ width = 10; height = 10; }
if(Sum1 == 0 & Sum2 == 1){ width = 05; height = 05; }
if(Sum1 == 0 & Sum2 == 2){ width = 10; height = 04; }
if(Sum1 == 0 & Sum2 == 3){ width = 10; height = 03; }
dev.new(width = width, height = height)
}
layout(matlayout);
Xaxis <- 1:length(IndPeriod_Plot);
if(BOOL_Dates){
if(NameTS %in% c("hour", "day", "month")){
Seq1 <- which(OutputsModel$DatesR[IndPeriod_Plot]$mday == 1 & OutputsModel$DatesR[IndPeriod_Plot]$mon %in% c(0, 3, 6, 9));
Seq2 <- which(OutputsModel$DatesR[IndPeriod_Plot]$mday == 1 & OutputsModel$DatesR[IndPeriod_Plot]$mon == 0);
Labels2 <- format(OutputsModel$DatesR[IndPeriod_Plot], format = formatAxis)[Seq2];
}
if(NameTS %in% c("year")){
Seq1 <- 1:length(OutputsModel$DatesR[IndPeriod_Plot]);
Seq2 <- 1:length(OutputsModel$DatesR[IndPeriod_Plot]);
Labels2 <- format(OutputsModel$DatesR[IndPeriod_Plot], format = formatAxis)[Seq2];
}
}
if(!is.null(BasinArea)){
Factor_MMH_M3S <- BasinArea/( 60*60/1000);
Factor_MMD_M3S <- BasinArea/( 24*60*60/1000);
Factor_MMM_M3S <- BasinArea/(365.25/12*24*60*60/1000);
Factor_MMY_M3S <- BasinArea/( 365.25*24*60*60/1000);
if(NameTS == "hour" ){ Factor_UNIT_M3S <- Factor_MMH_M3S; }
if(NameTS == "day" ){ Factor_UNIT_M3S <- Factor_MMD_M3S; }
if(NameTS == "month"){ Factor_UNIT_M3S <- Factor_MMM_M3S; }
if(NameTS == "year" ){ Factor_UNIT_M3S <- Factor_MMY_M3S; }
}
}
kPlot <- 0
## vector of Q values for the y-axis when it is expressed in
seqDATA1 <- log(c(0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000))
seqDATA2 <- exp(seqDATA1)
##Precip
if(BOOLPLOT_Precip){
kPlot <- kPlot+1; mar <- c(3, 5, 1, 5);
par(new = FALSE, mar = mar, las = 0)
ylim1 <- range(OutputsModel$Precip[IndPeriod_Plot], na.rm = TRUE); ylim2 <- ylim1 * c(1.0, 1.1); ylim2 <- rev(ylim2);
lwdP <- 0.7; if(NameTS %in% c("month", "year")){ lwdP <- 2; }
plot(Xaxis, OutputsModel$Precip[IndPeriod_Plot], type = "h", ylim = ylim2, col = "royalblue", lwd = lwdP, xaxt = "n", yaxt = "n", xlab = "", ylab = "", yaxs = "i");
axis(side = 2, at = pretty(ylim1), labels = pretty(ylim1), cex.axis = cexaxis)
par(las = 0); mtext(side = 2, paste("precip.", plotunit, sep = " "), line = lineY, cex = cexlab, adj = 1); par(las = 0);
if(BOOL_Psol){
legend("bottomright", c("solid","liquid"), col = c("lightblue", "royalblue"), lty = c(1, 1), lwd = c(lwdLine, lwdLine), bty = "o", bg = bgleg, box.col = bgleg, cex = cexleg)
par(new = TRUE);
plot(Xaxis, PsolLayerMean[IndPeriod_Plot], type = "h", ylim = ylim2, col = "lightblue", lwd = lwdP, xaxt = "n", yaxt = "n", xlab = "", ylab = "", yaxs = "i");
}
if(BOOL_Dates){
axis(side = 1, at = Seq1, labels = FALSE, cex.axis = cexaxis);
axis(side = 1, at = Seq2, labels = Labels2, lwd.ticks = 1.5, cex.axis = cexaxis);
} else { axis(side = 1, at = pretty(Xaxis), labels = pretty(Xaxis), cex.axis = cexaxis); }
}
##Temp
if(BOOLPLOT_Temp){
kPlot <- kPlot+1; mar <- c(3, 5, 1, 5);
par(new = FALSE, mar = mar, las = 0)
ylim1 <- c(+99999, -99999)
for(iLayer in 1:NLayers){
ylim1[1] <- min(ylim1[1], OutputsModel$CemaNeigeLayers[[iLayer]]$Temp);
ylim1[2] <- max(ylim1[2], OutputsModel$CemaNeigeLayers[[iLayer]]$Temp);
if(iLayer == 1){ SnowPackLayerMean <- OutputsModel$CemaNeigeLayers[[iLayer]]$Temp/NLayers;
} else { SnowPackLayerMean <- SnowPackLayerMean + OutputsModel$CemaNeigeLayers[[iLayer]]$Temp/NLayers; }
}
plot(SnowPackLayerMean[IndPeriod_Plot], type = "n", ylim = ylim1, xlab = "", ylab = "", xaxt = "n", yaxt = "n")
for(iLayer in 1:NLayers){ lines(OutputsModel$CemaNeigeLayers[[iLayer]]$Temp[IndPeriod_Plot], lty = 3, col = "orchid", lwd = lwdLine*0.8); }
abline(h = 0, col = "grey", lty = 2)
lines(SnowPackLayerMean[IndPeriod_Plot], type = "l", lwd = lwdLine*1.0, col = "darkorchid4")
axis(side = 2, at = pretty(ylim1), labels = pretty(ylim1), cex.axis = cexaxis)
par(las = 0); mtext(side = 2, expression(paste("temp. [", degree, "C]", sep = "")), padj = 0.2, line = lineY, cex = cexlab); par(las = 0);
legend("topright", c("mean", "layers"), col = c("darkorchid4", "orchid"), lty = c(1, 3), lwd = c(lwdLine*1.0, lwdLine*0.8), bty = "o", bg = bgleg, box.col = bgleg, cex = cexleg)
box()
if(BOOL_Dates){
axis(side = 1, at = Seq1, labels = FALSE, cex.axis = cexaxis);
axis(side = 1, at = Seq2, labels = Labels2, lwd.ticks = 1.5, cex.axis = cexaxis);
} else { axis(side = 1, at = pretty(Xaxis), labels = pretty(Xaxis), cex.axis = cexaxis); }
}
##SnowPack
if(BOOLPLOT_SnowPack){
kPlot <- kPlot+1; mar <- c(3, 5, 1, 5);
par(new = FALSE, mar = mar, las = 0)
ylim1 <- c(+99999, -99999)
for(iLayer in 1:NLayers){
ylim1[1] <- min(ylim1[1], OutputsModel$CemaNeigeLayers[[iLayer]]$SnowPack);
ylim1[2] <- max(ylim1[2], OutputsModel$CemaNeigeLayers[[iLayer]]$SnowPack);
if(iLayer == 1){ SnowPackLayerMean <- OutputsModel$CemaNeigeLayers[[iLayer]]$SnowPack/NLayers;
} else { SnowPackLayerMean <- SnowPackLayerMean + OutputsModel$CemaNeigeLayers[[iLayer]]$SnowPack/NLayers; }
}
plot(SnowPackLayerMean[IndPeriod_Plot], type = "l", ylim = ylim1, lwd = lwdLine*1.2, col = "royalblue", xlab = "", ylab = "", xaxt = "n", yaxt = "n")
for(iLayer in 1:NLayers){ lines(OutputsModel$CemaNeigeLayers[[iLayer]]$SnowPack[IndPeriod_Plot], lty = 3, col = "royalblue", lwd = lwdLine*0.8); }
axis(side = 2, at = pretty(ylim1), labels = pretty(ylim1), cex.axis = cexaxis)
par(las = 0); mtext(side = 2, paste("snow pack", "[mm]", sep = " "), line = lineY, cex = cexlab); par(las = 0);
legend("topright", c("mean", "layers"), col = c("royalblue", "royalblue"), lty = c(1, 3), lwd = c(lwdLine*1.2, lwdLine*0.8), bty = "o", bg = bgleg, box.col = bgleg, cex = cexleg)
box()
if(BOOL_Dates){
axis(side = 1, at = Seq1, labels = FALSE, cex.axis = cexaxis);
axis(side = 1, at = Seq2, labels = Labels2, lwd.ticks = 1.5, cex.axis = cexaxis);
} else { axis(side = 1, at = pretty(Xaxis), labels = pretty(Xaxis), cex.axis = cexaxis); }
}
##Flows
if(BOOLPLOT_Flows & log_scale) {
kPlot <- kPlot+1; mar <- c(3, 5, 1, 5);
par(new = FALSE, mar = mar, las = 0)
DATA2 <- Qobs
DATA2[!SelectQobsNotZero] <- mean(Qobs, na.rm = TRUE) / 10000
DATA2 <- log(DATA2)
DATA3 <- OutputsModel$Qsim
DATA2[!SelectQsimNotZero] <- mean(OutputsModel$Qsim, na.rm = TRUE) / 10000
DATA3 <- log(DATA3)
ylim1 <- range(DATA3[IndPeriod_Plot], na.rm = TRUE);
if(BOOL_Qobs){ ylim1 <- range(c(ylim1, DATA2[IndPeriod_Plot]), na.rm = TRUE); }
ylim2 <- c(ylim1[1], 1.2*ylim1[2]);
plot(Xaxis, rep(NA, length(Xaxis)), type = "n", ylim = ylim2, xlab = "", ylab = "", xaxt = "n", yaxt = "n");
txtleg <- NULL; colleg <- NULL;
if(BOOL_Qobs){ lines(Xaxis, DATA2[IndPeriod_Plot], lwd = lwdLine, lty = 1, col = "black"); txtleg <- c(txtleg, "observed"); colleg <- c(colleg, "black"); }
if(BOOL_Qsim){ lines(Xaxis, DATA3[IndPeriod_Plot], lwd = lwdLine, lty = 1, col = "orangered"); txtleg <- c(txtleg, "simulated"); colleg <- c(colleg, "orangered"); }
axis(side = 2, at = seqDATA1, labels = seqDATA2, cex.axis = cexaxis)
par(las = 0); mtext(side = 2, paste("flow", plotunit, sep = " "), line = lineY, cex = cexlab); par(las = 0);
if(!is.null(BasinArea)){
Factor <- Factor_UNIT_M3S;
axis(side = 4, at = pretty(ylim1*Factor)/Factor, labels = pretty(ylim1*Factor), cex.axis = cexaxis);
par(las = 0); mtext(side = 4, paste("flow", "m3/s", sep = " "), line = lineY, cex = cexlab); par(las = 0); }
if(BOOL_Dates){
axis(side = 1, at = Seq1, labels = FALSE, cex.axis = cexaxis);
axis(side = 1, at = Seq2, labels = Labels2, lwd.ticks = 1.5, cex.axis = cexaxis);
} else { axis(side = 1, at = pretty(Xaxis), labels = pretty(Xaxis), cex.axis = cexaxis); }
legend("topright", txtleg, col = colleg, lty = 1, lwd = lwdLine, bty = "o", bg = bgleg, box.col = bgleg, cex = cexleg)
legend("bottomright", "log scale", lty = 1, col = NA, bty = "o", bg = bgleg, box.col = bgleg, cex = cexleg)
box()
}
if(BOOLPLOT_Flows & !log_scale){
kPlot <- kPlot+1; mar <- c(3, 5, 1, 5);
par(new = FALSE, mar = mar, las = 0)
ylim1 <- range(OutputsModel$Qsim[IndPeriod_Plot], na.rm = TRUE);
if(BOOL_Qobs){ ylim1 <- range(c(ylim1, Qobs[IndPeriod_Plot]), na.rm = TRUE); }
ylim2 <- c(ylim1[1], 1.2*ylim1[2]);
plot(Xaxis, rep(NA, length(Xaxis)), type = "n", ylim = ylim2, xlab = "", ylab = "", xaxt = "n", yaxt = "n");
txtleg <- NULL; colleg <- NULL;
if(BOOL_Qobs){ lines(Xaxis, Qobs[IndPeriod_Plot], lwd = lwdLine, lty = 1, col = "black"); txtleg <- c(txtleg, "observed"); colleg <- c(colleg, "black"); }
if(BOOL_Qsim){ lines(Xaxis, OutputsModel$Qsim[IndPeriod_Plot], lwd = lwdLine, lty = 1, col = "orangered"); txtleg <- c(txtleg, "simulated"); colleg <- c(colleg, "orangered"); }
axis(side = 2, at = pretty(ylim1), labels = pretty(ylim1), cex.axis = cexaxis)
par(las = 0); mtext(side = 2, paste("flow", plotunit, sep = " "), line = lineY, cex = cexlab); par(las = 0);
if(!is.null(BasinArea)){
Factor <- Factor_UNIT_M3S;
axis(side = 4, at = pretty(ylim1*Factor)/Factor, labels = pretty(ylim1*Factor), cex.axis = cexaxis);
par(las = 0); mtext(side = 4, paste("flow", "m3/s", sep = " "), line = lineY, cex = cexlab); par(las = 0); }
if(BOOL_Dates){
axis(side = 1, at = Seq1, labels = FALSE, cex.axis = cexaxis);
axis(side = 1, at = Seq2, labels = Labels2, lwd.ticks = 1.5, cex.axis = cexaxis);
} else { axis(side = 1, at = pretty(Xaxis), labels = pretty(Xaxis), cex.axis = cexaxis); }
legend("topright", txtleg, col = colleg, lty = 1, lwd = lwdLine, bty = "o", bg = bgleg, box.col = bgleg, cex = cexleg)
box()
}
##Regime
if(BOOLPLOT_Regime){
kPlot <- kPlot+1; mar <- c(6, 5, 1, 5); plotunitregime <- "[mm/month]";
par(new = FALSE, mar = mar, las = 0)
##Data_formating_as_table
DataModel <- as.data.frame(matrix(as.numeric(NA), nrow = length(IndPeriod_Plot), ncol = 5));
DataModel[, 1] <- as.numeric(format(OutputsModel$DatesR[IndPeriod_Plot], format = "%Y%m%d%H"));
if(BOOL_Pobs){ DataModel[, 2] <- OutputsModel$Precip[IndPeriod_Plot]; }
if(BOOL_Psol){ DataModel[, 3] <- PsolLayerMean[IndPeriod_Plot]; }
if(BOOL_Qobs){ DataModel[, 4] <- Qobs[IndPeriod_Plot]; }
if(BOOL_Qsim){ DataModel[, 5] <- OutputsModel$Qsim[IndPeriod_Plot]; }
colnames(DataModel) <- c("Dates", "Precip", "Psol", "Qobs", "Qsim");
TxtDatesDataModel <- formatC(DataModel$Dates, format = "d", width = 8, flag = "0");
##Building_of_daily_time_series_if_needed
if(NameTS == "month"){ DataDaily <- NULL; }
if(NameTS == "day" ){ DataDaily <- DataModel; }
if(NameTS == "hour" ){ DataDaily <- as.data.frame(aggregate(DataModel[, 2:5], by = list(as.numeric(substr(TxtDatesDataModel, 1, 8))), FUN = sum, na.rm = T)); }
if(NameTS %in% c("hour", "day")){
colnames(DataDaily) <- c("Dates", "Precip", "Psol", "Qobs", "Qsim");
TxtDatesDataDaily <- formatC(DataDaily$Dates, format = "d", width = 8, flag = "0"); }
##Building_of_monthly_time_series_if_needed
if(NameTS == "month"){ DataMonthly <- DataModel; }
if(NameTS == "day" ){ DataMonthly <- as.data.frame(aggregate(DataDaily[, 2:5], by = list(as.numeric(substr(TxtDatesDataDaily, 1, 6))), FUN = sum, na.rm = T)); }
if(NameTS == "hour" ){ DataMonthly <- as.data.frame(aggregate(DataDaily[, 2:5], by = list(as.numeric(substr(TxtDatesDataDaily, 1, 6))), FUN = sum, na.rm = T)); }
colnames(DataMonthly) <- c("Dates", "Precip", "Psol", "Qobs", "Qsim");
TxtDatesDataMonthly <- formatC(DataMonthly$Dates, format = "d", width = 6, flag = "0");
##Computation_of_interannual_mean_series
if(!is.null(DataDaily)){
DataDailyInterAn <- as.data.frame(aggregate(DataDaily[, 2:5], by = list(as.numeric(substr(TxtDatesDataDaily , 5, 8))), FUN = mean, na.rm = T));
colnames(DataDailyInterAn) <- c("Dates", "Precip", "Psol", "Qobs", "Qsim"); }
if(!is.null(DataMonthly)){
DataMonthlyInterAn <- as.data.frame(aggregate(DataMonthly[, 2:5], by = list(as.numeric(substr(TxtDatesDataMonthly, 5, 6))), FUN = mean, na.rm = T));
colnames(DataMonthlyInterAn) <- c("Dates", "Precip", "Psol", "Qobs", "Qsim"); }
##Smoothing_of_daily_series_and_scale_conversion_to_make_them_become_a_monthly_regime
if(!is.null(DataDaily)){
##Smoothing
NDaysWindow <- 30;
DataDailyInterAn <- as.data.frame(cbind(DataDailyInterAn$Dates,
MyRollMean2(DataDailyInterAn$Precip, NDaysWindow), MyRollMean2(DataDailyInterAn$Psol, NDaysWindow),
MyRollMean2(DataDailyInterAn$Qobs , NDaysWindow), MyRollMean2(DataDailyInterAn$Qsim, NDaysWindow)));
colnames(DataDailyInterAn) <- c("Dates", "Precip", "Psol", "Qobs", "Qsim");
##Scale_conversion_to_make_them_become_a_monthly_regime
if(plotunitregime != "[mm/month]"){ stop(paste("incorrect unit for regime plot \n", sep = "")); return(NULL); }
DataDailyInterAn <- as.data.frame(cbind(DataDailyInterAn[1], DataDailyInterAn[2:5]*30));
}
##Plot_preparation
DataPlotP <- DataMonthlyInterAn;
if(!is.null(DataDaily)){
DataPlotQ <- DataDailyInterAn;
SeqX1 <- c( 1, 32, 61, 92, 122, 153, 183, 214, 245, 275, 306, 336, 366);
SeqX2 <- c( 15, 46, 75, 106, 136, 167, 197, 228, 259, 289, 320, 350);
labX <- "30-days rolling mean";
} else {
DataPlotQ <- DataMonthlyInterAn;
SeqX1 <- seq(from = 0.5, to = 12.5, by = 1);
SeqX2 <- seq(from = 1 , to = 12 , by = 1);
labX <- "";
}
xLabels1 <- rep("", 13);
xLabels2 <- c("jan", "feb", "mar", "apr", "may", "jun", "jul", "aug", "sep", "oct", "nov", "dec");
ylimQ <- range(c(DataPlotQ$Qobs, DataPlotQ$Qsim), na.rm = TRUE);
if(BOOL_Pobs){ ylimP <- c(max(DataPlotP$Precip, na.rm = TRUE), 0); }
txtleg <- NULL; colleg <- NULL; lwdleg <- NULL; lwdP = 10;
##Plot_forcings
if(BOOL_Pobs){
plot(SeqX2, DataPlotP$Precip, type = "h", xlim = range(SeqX1), ylim = c(3*ylimP[1], ylimP[2]), lwd = lwdP, lend = 1, lty = 1, col = "royalblue", xlab = "", ylab = "", xaxt = "n", yaxt = "n", yaxs = "i", bty = "n")
txtleg <- c(txtleg, "Ptot" ); colleg <- c(colleg, "royalblue"); lwdleg <- c(lwdleg, lwdP/3);
axis(side = 2, at = pretty(0.8*ylimP, n = 3), labels = pretty(0.8*ylimP, n = 3), cex.axis = cexaxis, col.axis = "royalblue", col.ticks = "royalblue");
par(new = TRUE); }
if(BOOL_Psol){
plot(SeqX2, DataPlotP$Psol, type = "h", xlim = range(SeqX1), ylim = c(3*ylimP[1], ylimP[2]), lwd = lwdP, lend = 1, lty = 1, col = "lightblue", xlab = "", ylab = "", xaxt = "n", yaxt = "n", yaxs = "i", bty = "n");
txtleg <- c(txtleg, "Psol" ); colleg <- c(colleg, "lightblue"); lwdleg <- c(lwdleg, lwdP/3);
par(new = TRUE); }
##Plot_flows
plot(NULL, type = "n", xlim = range(SeqX1), ylim = c(ylimQ[1], 2*ylimQ[2]), xlab = "", ylab = "", xaxt = "n", yaxt = "n")
if(BOOL_Qobs){ lines(1:nrow(DataPlotQ), DataPlotQ$Qobs, lwd = lwdLine, lty = 1, col = "black" ); txtleg <- c(txtleg, "Qobs" ); colleg <- c(colleg, "black" ); lwdleg <- c(lwdleg, lwdLine); }
if(BOOL_Qsim){ lines(1:nrow(DataPlotQ), DataPlotQ$Qsim, lwd = lwdLine, lty = 1, col = "orangered"); txtleg <- c(txtleg, "Qsim"); colleg <- c(colleg, "orangered"); lwdleg <- c(lwdleg, lwdLine); }
##Axis_and_legend
axis(side = 1, at = SeqX1, tick = TRUE , labels = xLabels1, cex.axis = cexaxis)
axis(side = 1, at = SeqX2, tick = FALSE, labels = xLabels2, cex.axis = cexaxis)
axis(side = 2, at = pretty(ylimQ), labels = pretty(ylimQ), cex.axis = cexaxis)
par(las = 0); mtext(side = 1, labX, line = lineX, cex = cexlab); par(las = 0);
posleg <- "topright"; txtlab <- "flow regime";
if(BOOL_Pobs){ posleg <- "right"; txtlab <- "precip. & flow regime"; }
par(las = 0); mtext(side = 2, paste(txtlab, " ", plotunitregime, sep = ""), line = lineY, cex = cexlab); par(las = 0);
if(!is.null(BasinArea)){
Factor <- Factor_MMM_M3S;
axis(side = 4, at = pretty(ylimQ*Factor)/Factor, labels = pretty(ylimQ*Factor), cex.axis = cexaxis);
par(las = 0); mtext(side = 4, paste("flow ", "m3/s", sep = ""), line = lineY, cex = cexlab); par(las = 0); }
### posleg <- "topright"; if(BOOL_Pobs){ posleg <- "right"; }
### legend(posleg, txtleg, col = colleg, lty = 1, lwd = lwdleg, bty = "o", bg = bgleg, box.col = bgleg, cex = cexleg)
box()
}
##Cumulative_frequency
if(BOOLPLOT_CumFreq){
kPlot <- kPlot+1; mar <- c(6, 5, 1, 5);
par(new = FALSE, mar = mar, las = 0)
xlim <- c(0, 1);
if(BOOL_Qobs & !BOOL_Qsim){ SelectNotZero <- SelectQobsNotZero;
ylim <- range(log(Qobs[IndPeriod_Plot][SelectNotZero]), na.rm = TRUE); }
if(BOOL_Qsim & !BOOL_Qobs){ SelectNotZero <- SelectQsimNotZero;
ylim <- range(log(OutputsModel$Qsim[IndPeriod_Plot][SelectNotZero]), na.rm = TRUE); }
if(BOOL_Qobs & BOOL_Qsim){ SelectNotZero <- SelectQobsNotZero & SelectQsimNotZero;
ylim <- range(log(c(Qobs[IndPeriod_Plot][SelectNotZero], OutputsModel$Qsim[IndPeriod_Plot][SelectNotZero])), na.rm = TRUE); }
plot(0, 0, type = "n", xlim = xlim, ylim = ylim, xaxt = "n", yaxt = "n", xlab = "", ylab = "", main = "");
### abline(h = 0, lty = 2, col = grey(0.5));
### abline(h = 1, lty = 2, col = grey(0.5));
axis(side = 1, at = pretty(xlim), labels = pretty(xlim), cex.axis = cexaxis);
par(las = 0); mtext(side = 1, text = "non-exceedance prob. [-]", line = lineY, cex = cexlab); par(las = 0);
axis(side = 2, at = seqDATA1, labels = seqDATA2, cex.axis = cexaxis)
par(las = 0); mtext(side = 2, text = paste("flow ", plotunit, "", sep = ""), line = lineY, cex = cexlab); par(las = 0);
txtleg <- NULL; colleg <- NULL;
if(BOOL_Qobs){
DATA2 <- log(Qobs[IndPeriod_Plot][SelectNotZero]);
SeqQuant <- seq(0, 1, by = 1/(length(DATA2))); Quant <- as.numeric(quantile(DATA2, SeqQuant, na.rm = TRUE));
Fn <- ecdf(DATA2); YY <- DATA2; YY <- YY[order( Fn(DATA2) )]; XX <- Fn(DATA2); XX <- XX[order( Fn(DATA2) )];
lines(XX, YY, lwd = 1, col = "black");
txtleg <- c(txtleg, "observed"); colleg <- c(colleg, "black"); }
if(BOOL_Qsim){
DATA2 <- log(OutputsModel$Qsim[IndPeriod_Plot][SelectNotZero]);
SeqQuant <- seq(0, 1, by = 1/(length(DATA2))); Quant <- as.numeric(quantile(DATA2, SeqQuant, na.rm = TRUE));
Fn <- ecdf(DATA2); YY <- DATA2; YY <- YY[order( Fn(DATA2) )]; XX <- Fn(DATA2); XX <- XX[order( Fn(DATA2) )];
lines(XX, YY, lwd = 1, col = "orangered");
txtleg <- c(txtleg, "simulated"); colleg <- c(colleg, "orangered"); }
if(!is.null(BasinArea)){
Factor <- Factor_UNIT_M3S;
axis(side = 4, at = seqDATA1, labels = round(seqDATA2*Factor), cex.axis = cexaxis)
par(las = 0); mtext(side = 4, paste("flow ", "m3/s", sep = ""), line = lineY, cex = cexlab); par(las = 0); }
legend("topleft", txtleg, col = colleg, lty = 1, lwd = lwdLine, bty = "o", bg = bgleg, box.col = bgleg, cex = cexleg)
legend("bottomright", "log scale", lty = 1, col = NA, bty = "o", bg = bgleg, box.col = bgleg, cex = cexleg)
box()
}
##Correlation_QQ
if(BOOLPLOT_CorQQ){
kPlot <- kPlot+1; mar <- c(6, 5, 1, 5);
par(new = FALSE, mar = mar, las = 0)
ylim <- log(range(c(Qobs[IndPeriod_Plot][SelectQobsNotZero & SelectQsimNotZero], OutputsModel$Qsim[IndPeriod_Plot][SelectQobsNotZero & SelectQsimNotZero]), na.rm = TRUE));
plot(log(Qobs[IndPeriod_Plot][SelectQobsNotZero & SelectQsimNotZero]), log(OutputsModel$Qsim[IndPeriod_Plot][SelectQobsNotZero & SelectQsimNotZero]), type = "p", pch = 1, cex = 0.9, col = "black", xlim = ylim, ylim = ylim, xaxt = "n", yaxt = "n", xlab = "", ylab = "")
abline(a = 0, b = 1, col = "royalblue");
axis(side = 1, at = seqDATA1, labels = seqDATA2, cex = cexaxis);
axis(side = 2, at = seqDATA1, labels = seqDATA2, cex = cexaxis);
par(las = 0); mtext(side = 1, paste("observed flow ", plotunit, "", sep = ""), line = lineX, cex = cexlab); par(las = 0);
par(las = 0); mtext(side = 2, paste("simulated flow ", plotunit, "", sep = ""), line = lineY, cex = cexlab); par(las = 0);
if(!is.null(BasinArea)){
Factor <- Factor_UNIT_M3S;
axis(side = 4, at = seqDATA1, labels = round(seqDATA2*Factor), cex.axis = cexaxis);
par(las = 0); mtext(side = 4, paste("flow ", "m3/s", sep = ""), line = lineY, cex = cexlab); par(las = 0); }
legend("bottomright", "log scale", lty = 1, col = NA, bty = "o", bg = bgleg, box.col = bgleg, cex = cexleg)
box()
}
##Empty_plots
while(kPlot < iPlotMax){
kPlot <- kPlot+1;
par(new = FALSE)
plot(0, 0, type = "n", xlab = "", ylab = "", axes = FALSE)
}
##Restoring_layout_options
layout(1);
}