Forked from HYCAR-Hydro / airGR
Source project has a limited visibility.
example_RunModel_GR1A.R 1.69 KiB
## load of catchment data
require(airGR)
data(L0123001)
## conversion of example data from daily to yearly time-step
TabSeries       <- data.frame(BasinObs$DatesR,BasinObs$P,BasinObs$E,BasinObs$T,BasinObs$Qmm)
TimeFormat      <- "daily"
NewTimeFormat   <- "yearly"
ConvertFun      <- c("sum","sum","mean","sum")
YearFirstMonth  <- 09;
NewTabSeries    <- SeriesAggreg(TabSeries=TabSeries,TimeFormat=TimeFormat,
                                NewTimeFormat=NewTimeFormat,ConvertFun=ConvertFun,
                                YearFirstMonth=YearFirstMonth)
BasinObs        <- NewTabSeries
names(BasinObs) <- c("DatesR","P","E","T","Qmm")
## preparation of the InputsModel object
InputsModel <- CreateInputsModel(FUN_MOD=RunModel_GR1A,DatesR=BasinObs$DatesR,
                                 Precip=BasinObs$P,PotEvap=BasinObs$E)
## run period selection
Ind_Run <- seq(which(format(BasinObs$DatesR,format="%Y")=="1990"),
               which(format(BasinObs$DatesR,format="%Y")=="1999"))
## preparation of the RunOptions object
RunOptions <- CreateRunOptions(FUN_MOD=RunModel_GR1A,InputsModel=InputsModel,IndPeriod_Run=Ind_Run)
## simulation
Param <- c(0.840)
OutputsModel <- RunModel_GR1A(InputsModel=InputsModel,RunOptions=RunOptions,Param=Param)
## results preview
plot_OutputsModel(OutputsModel=OutputsModel,Qobs=BasinObs$Qmm[Ind_Run])
## efficiency criterion: Nash-Sutcliffe Efficiency
InputsCrit  <- CreateInputsCrit(FUN_CRIT=ErrorCrit_NSE,InputsModel=InputsModel,
                                RunOptions=RunOptions,Qobs=BasinObs$Qmm[Ind_Run])
OutputsCrit <- ErrorCrit_NSE(InputsCrit=InputsCrit,OutputsModel=OutputsModel)
cat(paste("  Crit  ",OutputsCrit$CritName,"  ",round(OutputsCrit$CritValue,4),"\n",sep=""))