Forked from HYCAR-Hydro / airGR
Source project has a limited visibility.
abstract_hardware_components.py 15.12 KiB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
from abc import ABC, abstractmethod

import numpy as np
from ohmpi.logging_setup import create_stdout_logger
import time
from threading import Event, Barrier, BrokenBarrierError


class CtlAbstract(ABC):
    def __init__(self, **kwargs):
        self.board_name = kwargs.pop('board_name', 'unknown CTL hardware')
        self.bus = None  # TODO: allow for several buses
        self.exec_logger = kwargs.pop('exec_logger', None)
        if self.exec_logger is None:
            self.exec_logger = create_stdout_logger('exec_ctl')
        self.soh_logger = kwargs.pop('soh_logger', None)
        if self.soh_logger is None:
            self.soh_logger = create_stdout_logger('soh_ctl')
        self.exec_logger.debug(f'{self.board_name} Ctl initialization')
        self._cpu_temp_available = False
        self.max_cpu_temp = np.inf

    @property
    def cpu_temperature(self):
        if not self._cpu_temp_available:
            self.exec_logger.warning(f'CPU temperature reading is not available for {self.board_name}')
            cpu_temp = np.nan
        else:
            cpu_temp = self._cpu_temp
            if cpu_temp > self.max_cpu_temp:
                self.soh_logger.warning(f'CPU temperature of {self.board_name} is over the limit!')
        return cpu_temp

    @property
    @abstractmethod
    def _cpu_temp(self):
        pass


class PwrAbstract(ABC):
    def __init__(self, **kwargs):
        self.board_name = kwargs.pop('board_name', 'unknown PWR hardware')
        self.exec_logger = kwargs.pop('exec_logger', None)
        if self.exec_logger is None:
            self.exec_logger = create_stdout_logger('exec_mux')
        self.soh_logger = kwargs.pop('soh_logger', None)
        if self.soh_logger is None:
            self.soh_logger = create_stdout_logger('soh_mux')
        self.voltage_adjustable = kwargs.pop('voltage_adjustable', False)
        self._voltage = np.nan
        self._current_adjustable = kwargs.pop('current_adjustable', False)
        self._current = np.nan
        self._state = 'off'
        self._current_min = kwargs.pop('current_min', 0.)
        self._current_max = kwargs.pop('current_max', 0.)
        self._voltage_min = kwargs.pop('voltage_min', 0.)
        self._voltage_max = kwargs.pop('voltage_max', 0.)
        self.ctl = kwargs.pop('ctl', None)

    @property
    @abstractmethod
    def current(self):
        # add actions to read the DPS current
        return self._current

    @current.setter
    @abstractmethod
    def current(self, value, **kwargs):
        # add actions to set the DPS current
        pass

    @abstractmethod
    def turn_off(self):
        self.exec_logger.debug(f'Switching {self.board_name} off')
        self._state = 'off'

    @abstractmethod
    def turn_on(self):
        self.exec_logger.debug(f'Switching {self.board_name} on')
        self._state = 'on'

    @property
    @abstractmethod
    def voltage(self):
        # add actions to read the DPS voltage
        return self._voltage

    @voltage.setter
    @abstractmethod
    def voltage(self, value):
        assert isinstance(value, float)
        if not self.voltage_adjustable:
            self.exec_logger.warning(f'Voltage cannot be set on {self.board_name}...')
        else:
            assert self._voltage_min < value < self._voltage_max
            # add actions to set the DPS voltage
            self._voltage = value


class MuxAbstract(ABC):
    def __init__(self, **kwargs):
        self.board_name = kwargs.pop('board_name', 'unknown MUX hardware')
        self.exec_logger = kwargs.pop('exec_logger', None)
        if self.exec_logger is None:
            self.exec_logger = create_stdout_logger('exec_mux')
        self.soh_logger = kwargs.pop('soh_logger', None)
        if self.soh_logger is None:
            self.soh_logger = create_stdout_logger('soh_mux')
        self.board_id = kwargs.pop('id', None)
        if self.board_id is None:
            self.exec_logger.error(f'MUX {self.board_name} should have an id !')
        self.exec_logger.debug(f'MUX {self.board_id} ({self.board_name}) initialization')
        self.ctl = kwargs.pop('ctl', None)
        cabling = kwargs.pop('cabling', None)
        self.cabling = {}
        if cabling is not None:
            for k, v in cabling.items():
                if v[0] == self.board_id:
                    self.cabling.update({k: (v[1], k[1])})
        self.exec_logger.debug(f'{self.board_id} cabling: {self.cabling}')
        self.addresses = kwargs.pop('addresses', None)
        self._barrier = kwargs.pop('barrier', Barrier(1))
        self._activation_delay = kwargs.pop('activation_delay', 0.)  # in s
        self._release_delay = kwargs.pop('release_delay', 0.)  # in s

    @abstractmethod
    def _get_addresses(self):
        pass

    @property
    def barrier(self):
        return self._barrier

    @barrier.setter
    def barrier(self, value):
        assert isinstance(value, Barrier)
        self._barrier = value

    @abstractmethod
    def reset(self):
        pass

    def switch(self, elec_dict=None, state='off', bypass_check=False):  # TODO: generalize for other roles
        """Switch a given list of electrodes with different roles.
        Electrodes with a value of 0 will be ignored.

        Parameters
        ----------
        elec_dict : dictionary, optional
            Dictionary of the form: {role: [list of electrodes]}.
        state : str, optional
            Either 'on' or 'off'.
        bypass_check: bool, optional
            Bypasses checks for A==M or A==M or B==M or B==N (i.e. used for rs-check)
        """
        status = True
        if elec_dict is not None:
            self.exec_logger.debug(f'Switching {self.board_name} ')
            # check to prevent A == B (SHORT-CIRCUIT)
            if 'A' in elec_dict.keys() and 'B' in elec_dict.keys():
                out = np.in1d(elec_dict['A'], elec_dict['B'])
                if out.any() and state == 'on':  # noqa
                    self.exec_logger.error('Trying to switch on some electrodes with both A and B roles. '
                                           'This would create a short-circuit! Switching aborted.')
                    status = False
                    return status

            # check that none of M or N are the same as A or B
            # as to prevent burning the MN part which cannot take
            # the full voltage of the DPS
            if 'A' in elec_dict.keys() and 'B' in elec_dict.keys() and 'M' in elec_dict.keys() \
                    and 'N' in elec_dict.keys():
                if bypass_check:
                    self.exec_logger.debug(f'Bypassing :{bypass_check}')
                elif (np.in1d(elec_dict['M'], elec_dict['A']).any()  # noqa
                        or np.in1d(elec_dict['M'], elec_dict['B']).any()  # noqa
                        or np.in1d(elec_dict['N'], elec_dict['A']).any()  # noqa
                        or np.in1d(elec_dict['N'], elec_dict['B']).any()) and state=='on':  # noqa
                    self.exec_logger.error('Trying to switch on some electrodes with both M or N role and A or B role. '
                                           'This could create an over-voltage in the RX! Switching aborted.')
                    self.barrier.abort()
                    status = False
                    return status

            # if all ok, then wait for the barrier to open, then switch the electrodes
            self.exec_logger.debug(f'{self.board_id} waiting to switch.')
            try:
                self.barrier.wait()
                for role in elec_dict:
                    for elec in elec_dict[role]:
                        if elec > 0:  # Is this condition related to electrodes to infinity?
                            if (elec, role) in self.cabling.keys():
                                self.switch_one(elec, role, state)
                                status &= True
                            else:
                                self.exec_logger.debug(f'{self.board_id} skipping switching {(elec, role)} because it '
                                                       f'is not in board cabling.')
                                status = False
                self.exec_logger.debug(f'{self.board_id} switching done.')
            except BrokenBarrierError:
                self.exec_logger.debug(f'Barrier error {self.board_id} switching aborted.')
                status = False
        else:
            self.exec_logger.warning(f'Missing argument for {self.board_name}.switch: elec_dict is None.')
            status = False
        if state == 'on':
            time.sleep(self._activation_delay)
        elif state == 'off':
            time.sleep(self._release_delay)
        return status

    @abstractmethod
    def switch_one(self, elec=None, role=None, state=None):
        """Switches one single relay.

        Parameters
        ----------
        elec :
        role :
        state : str, optional
            Either 'on' or 'off'.
        """
        self.exec_logger.debug(f'switching {state} electrode {elec} with role {role}')

    def test(self, elec_dict, activation_time=1.):
        """Method to test the multiplexer.

        Parameters
        ----------
        elec_dict : dictionary, optional
            Dictionary of the form: {role: [list of electrodes]}.
        activation_time : float, optional
            Time in seconds during which the relays are activated.
        """
        self.exec_logger.debug(f'Starting {self.board_name} test...')
        self.reset()

        for role in elec_dict.keys():
            for elec in elec_dict[role]:
                self.switch_one(elec, role, 'on')
                time.sleep(activation_time)
                self.switch_one(elec, role, 'off')
                time.sleep(activation_time)
        self.exec_logger.debug('Test finished.')


class TxAbstract(ABC):
    def __init__(self, **kwargs):
        self.board_name = kwargs.pop('board_name', 'unknown TX hardware')
        injection_duration = kwargs.pop('injection_duration', 1.)
        self.exec_logger = kwargs.pop('exec_logger', None)
        if self.exec_logger is None:
            self.exec_logger = create_stdout_logger('exec_tx')
        self.soh_logger = kwargs.pop('soh_logger', None)
        if self.soh_logger is None:
            self.soh_logger = create_stdout_logger('soh_tx')
        self.ctl = kwargs.pop('ctl', None)
        self.pwr = kwargs.pop('pwr', None)
        self._polarity = 0
        self._injection_duration = None
        self._adc_gain = 1.
        self.injection_duration = injection_duration
        self._latency = kwargs.pop('latency', 0.)
        self.tx_sync = kwargs.pop('tx_sync', Event())
        self.exec_logger.debug(f'{self.board_name} TX initialization')

    @property
    def adc_gain(self):
        return self._adc_gain

    @adc_gain.setter
    def adc_gain(self, value):
        """
        Set gain on RX ADC
        Parameters
        ----------
        value: float
        """
        self._adc_gain = value
        self.exec_logger.debug(f'Setting TX ADC gain to {value}')

    @abstractmethod
    def adc_gain_auto(self):
        pass

    @abstractmethod
    def current_pulse(self, **kwargs):
        pass

    @abstractmethod
    def inject(self, polarity=1, injection_duration=None):
        """
        Abstract method to define injection
        Parameters
        ----------
        polarity: int, default 1
            Injection polarity, can be eiter  1, 0 or -1
        injection_duration: float, default None
            Injection duration in seconds
        """
        assert polarity in [-1, 0, 1]
        if injection_duration is None:
            injection_duration = self._injection_duration
        if np.abs(polarity) > 0:
            self.pwr.turn_on()
            self.tx_sync.set()
            time.sleep(injection_duration)
            self.pwr.turn_off()
        else:
            self.tx_sync.set()
            self.pwr.turn_off()
            time.sleep(injection_duration)
        self.tx_sync.clear()

    @property
    def injection_duration(self):
        return self._injection_duration

    @injection_duration.setter
    def injection_duration(self, value):
        assert isinstance(value, float)
        assert value > 0.
        self._injection_duration = value

    @property
    def polarity(self):
        return self._polarity

    @polarity.setter
    @abstractmethod
    def polarity(self, polarity):
        """
        Sets polarity value
        Parameters
        ----------
        polarity: int
            Either -1, 0 or 1.
        """
        assert polarity in [-1, 0, 1]
        self._polarity = polarity

    @property
    @abstractmethod
    def tx_bat(self):
        pass

    def voltage_pulse(self, voltage=0., length=None, polarity=1):
        """ Generates a square voltage pulse

        Parameters
        ----------
        voltage: float, optional
            Voltage to apply in volts, tx_v_def is applied if omitted.
        length: float, optional
            Length of the pulse in seconds
        polarity: 1,0,-1
            Polarity of the pulse
        """
        if length is None:
            length = self.injection_duration
        self.pwr.voltage = voltage
        self.exec_logger.debug(f'Voltage pulse of {polarity * self.pwr.voltage:.3f} V for {length:.3f} s')
        self.inject(polarity=polarity, injection_duration=length)


class RxAbstract(ABC):
    def __init__(self, **kwargs):
        self.exec_logger = kwargs.pop('exec_logger', None)
        if self.exec_logger is None:
            self.exec_logger = create_stdout_logger('exec_rx')
        self.soh_logger = kwargs.pop('soh_logger', None)
        if self.soh_logger is None:
            self.soh_logger = create_stdout_logger('soh_rx')
        self.ctl = kwargs.pop('ctl', None)
        self.board_name = kwargs.pop('board_name', 'unknown RX hardware')
        self._sampling_rate = kwargs.pop('sampling_rate', 1)  # ms
        self.exec_logger.debug(f'{self.board_name} RX initialization')
        self._voltage_max = kwargs.pop('voltage_max', 0.)
        self._adc_gain = 1.
        self._max_sampling_rate = np.inf
        self._latency = kwargs.pop('latency', 0.)
        self._bias = 0.

    @property
    def adc_gain(self):
        return self._adc_gain

    @adc_gain.setter
    def adc_gain(self, value):
        """
        Sets gain on RX ADC
        Parameters
        ----------
        value: float
        """
        self._adc_gain = value
        self.exec_logger.debug(f'Setting RX ADC gain to {value}')

    @abstractmethod
    def adc_gain_auto(self):
        pass

    @property
    def sampling_rate(self):
        return self._sampling_rate

    @sampling_rate.setter
    def sampling_rate(self, value):
        """
        Sets sampling rate
        Parameters
        ----------
        value: float, in Hz
        """
        assert value > 0.
        if value > self._max_sampling_rate:
            self.exec_logger.warning(f'{self} maximum sampling rate is {self._max_sampling_rate}. '
                                     f'Setting sampling rate to the highest allowed value.')
            value = self._max_sampling_rate
        self._sampling_rate = value
        self.exec_logger.debug(f'Sampling rate set to {value}')

    @property
    @abstractmethod
    def voltage(self):
        """ Gets the voltage VMN in Volts
        """
        pass