Forked from HYCAR-Hydro / airGR
Source project has a limited visibility.
RunModel_CemaNeigeGR5J.R 17.51 KiB
#*****************************************************************************************************************
#' Function which performs a single run for the CemaNeige-GR5J daily lumped model.
#'
#' For further details on the model, see the references section.
#' For further details on the argument structures and initialisation options, see \code{\link{CreateRunOptions}}.
#*****************************************************************************************************************
#' @title Run with the CemaNeigeGR5J hydrological model
#' @author Laurent Coron (December 2013)
#' @references
#'   Le Moine, N. (2008), Le bassin versant de surface vu par le souterrain : une voie d'amélioration des performances 
#'       et du réalisme des modèles pluie-débit ?, PhD thesis (french), UPMC, Paris, France. \cr
#'   Pushpalatha, R., C. Perrin, N. Le Moine, T. Mathevet and V. Andréassian (2011), 
#'       A downward structural sensitivity analysis of hydrological models to improve low-flow simulation, 
#'       Journal of Hydrology, 411(1-2), 66-76, doi:10.1016/j.jhydrol.2011.09.034. \cr
#'   Valéry, A., V. Andréassian and C. Perrin (2014), 
#'       "As simple as possible but not simpler": what is useful in a temperature-based snow-accounting routine? 
#'       Part 1 - Comparison of six snow accounting routines on 380 catchments, Journal of Hydrology, doi:10.1016/j.jhydrol.2014.04.059. \cr
#'   Valéry, A., V. Andréassian and C. Perrin (2014), 
#'       "As simple as possible but not simpler": What is useful in a temperature-based snow-accounting routine? 
#'       Part 2 - Sensitivity analysis of the Cemaneige snow accounting routine on 380 catchments, Journal of Hydrology, doi:10.1016/j.jhydrol.2014.04.058.
#' @seealso \code{\link{RunModel_CemaNeigeGR4J}}, \code{\link{RunModel_CemaNeigeGR6J}}, \code{\link{RunModel_GR5J}},
#'          \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}.
#' @example tests/example_RunModel_CemaNeigeGR5J.R
#' @useDynLib airgr
#' @encoding UTF-8
#' @export
#_FunctionInputs__________________________________________________________________________________________________
#' @param  InputsModel         [object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details
#' @param  RunOptions          [object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details
#' @param  Param               [numeric] vector of 7 parameters                                                             
#'                             \tabular{ll}{                                                                      
#'                             GR5J X1      \tab production store capacity [mm]                                \cr
#'                             GR5J X2      \tab intercatchment exchange coefficient 1 [mm/d]                  \cr
#'                             GR5J X3      \tab routing store capacity [mm]                                   \cr
#'                             GR5J X4      \tab unit hydrograph time constant [d]                             \cr
#'                             GR5J X5      \tab intercatchment exchange coefficient 2 [-]                     \cr
#'                             CemaNeige X1 \tab weighting coefficient for snow pack thermal state [-]         \cr
#'                             CemaNeige X2 \tab degree-day melt coefficient [mm/degC/d]                       \cr
#'                             }                                                                                  
#_FunctionOutputs_________________________________________________________________________________________________
#' @return  [list] list containing the function outputs organised as follows:                                         
#'          \tabular{ll}{                                                                                         
#'          \emph{$DatesR  }          \tab [POSIXlt] series of dates                                                     \cr
#'          \emph{$PotEvap }          \tab [numeric] series of input potential evapotranspiration [mm/d]                 \cr
#'          \emph{$Precip  }          \tab [numeric] series of input total precipitation [mm/d]                          \cr
#'          \emph{$Prod    }          \tab [numeric] series of production store level (X(2)) [mm]                        \cr
#'          \emph{$AE      }          \tab [numeric] series of actual evapotranspiration [mm/d]                          \cr
#'          \emph{$Perc    }          \tab [numeric] series of percolation (PERC) [mm/d]                                 \cr
#'          \emph{$PR      }          \tab [numeric] series of PR=PN-PS+PERC [mm/d]                                      \cr
#'          \emph{$Q9      }          \tab [numeric] series of HU1 outflow (Q9) [mm/d]                                   \cr
#'          \emph{$Q1      }          \tab [numeric] series of HU2 outflow (Q1) [mm/d]                                   \cr
#'          \emph{$Rout    }          \tab [numeric] series of routing store level (X(1)) [mm]                           \cr
#'          \emph{$Exch    }          \tab [numeric] series of potential semi-exchange between catchments [mm/d]         \cr
#'          \emph{$AExch   }          \tab [numeric] series of actual exchange between catchments (1+2) [mm/d]           \cr
#'          \emph{$QR      }          \tab [numeric] series of routing store outflow (QR) [mm/d]                         \cr
#'          \emph{$QD      }          \tab [numeric] series of direct flow from HU2 after exchange (QD) [mm/d]           \cr
#'          \emph{$Qsim    }          \tab [numeric] series of Qsim [mm/d]                                               \cr
#'          \emph{$CemaNeigeLayers}   \tab [list] list of CemaNeige outputs (1 list per layer)                          \cr
#'          \emph{$CemaNeigeLayers[[iLayer]]$Pliq         }   \tab [numeric] series of liquid precip. [mm/d]                          \cr
#'          \emph{$CemaNeigeLayers[[iLayer]]$Psol         }   \tab [numeric] series of solid precip. [mm/d]                           \cr
#'          \emph{$CemaNeigeLayers[[iLayer]]$SnowPack     }   \tab [numeric] series of snow pack [mm]                                 \cr
#'          \emph{$CemaNeigeLayers[[iLayer]]$ThermalState }   \tab [numeric] series of snow pack thermal state [degC]                 \cr
#'          \emph{$CemaNeigeLayers[[iLayer]]$Gratio       }   \tab [numeric] series of Gratio [0-1]                                   \cr
#'          \emph{$CemaNeigeLayers[[iLayer]]$PotMelt      }   \tab [numeric] series of potential snow melt [mm/d]                     \cr
#'          \emph{$CemaNeigeLayers[[iLayer]]$Melt         }   \tab [numeric] series of actual snow melt [mm/d]                        \cr
#'          \emph{$CemaNeigeLayers[[iLayer]]$PliqAndMelt  }   \tab [numeric] series of liquid precip. + actual snow melt [mm/d]       \cr
#'          \emph{$StateEnd}                                  \tab [numeric] states at the end of the run: \cr\tab res. & HU levels [mm], CemaNeige states [mm & degC] \cr
#'          }                                                                                                     
#'          (refer to the provided references or to the package source code for further details on these model outputs)
#*****************************************************************************************************************
7172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
RunModel_CemaNeigeGR5J <- function(InputsModel,RunOptions,Param){ NParam <- 7; FortranOutputsCemaNeige <- c("Pliq","Psol","SnowPack","ThermalState","Gratio","PotMelt","Melt","PliqAndMelt"); FortranOutputsMod <- c("PotEvap","Precip","Prod","AE","Perc","PR","Q9","Q1","Rout","Exch","AExch","QR","QD","Qsim"); ##Arguments_check if(inherits(InputsModel,"InputsModel")==FALSE){ stop("InputsModel must be of class 'InputsModel' \n"); return(NULL); } if(inherits(InputsModel,"daily" )==FALSE){ stop("InputsModel must be of class 'daily' \n"); return(NULL); } if(inherits(InputsModel,"GR" )==FALSE){ stop("InputsModel must be of class 'GR' \n"); return(NULL); } if(inherits(InputsModel,"CemaNeige" )==FALSE){ stop("InputsModel must be of class 'CemaNeige' \n"); return(NULL); } if(inherits(RunOptions,"RunOptions" )==FALSE){ stop("RunOptions must be of class 'RunOptions' \n"); return(NULL); } if(inherits(RunOptions,"GR" )==FALSE){ stop("RunOptions must be of class 'GR' \n"); return(NULL); } if(inherits(RunOptions,"CemaNeige" )==FALSE){ stop("RunOptions must be of class 'CemaNeige' \n"); return(NULL); } if(!is.vector(Param)){ stop("Param must be a vector \n"); return(NULL); } if(sum(!is.na(Param))!=NParam){ stop(paste("Param must be a vector of length ",NParam," and contain no NA \n",sep="")); return(NULL); } Param <- as.double(Param); ##Input_data_preparation if(identical(RunOptions$IndPeriod_WarmUp,as.integer(0))){ RunOptions$IndPeriod_WarmUp <- NULL; } IndPeriod1 <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run); LInputSeries <- as.integer(length(IndPeriod1)) IndPeriod2 <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries; ParamCemaNeige <- Param[(length(Param)-1):length(Param)]; NParamMod <- as.integer(length(Param)-2); ParamMod <- Param[1:NParamMod]; NLayers <- length(InputsModel$LayerPrecip); NStatesMod <- as.integer(length(RunOptions$IniStates)-2*NLayers); ExportDatesR <- "DatesR" %in% RunOptions$Outputs_Sim; ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim; ##SNOW_MODULE________________________________________________________________________________## if(RunOptions$RunSnowModule==TRUE){ if("all" %in% RunOptions$Outputs_Sim){ IndOutputsCemaNeige <- as.integer(1:length(FortranOutputsCemaNeige)); } else { IndOutputsCemaNeige <- which(FortranOutputsCemaNeige %in% RunOptions$Outputs_Sim); } CemaNeigeLayers <- list(); CemaNeigeStateEnd <- NULL; NameCemaNeigeLayers <- "CemaNeigeLayers"; ##Call_DLL_CemaNeige_________________________ for(iLayer in 1:NLayers){ StateStartCemaNeige <- RunOptions$IniStates[ (NStatesMod+2*(iLayer-1)+1):(NStatesMod+2*(iLayer-1)+2) ]; RESULTS <- .Fortran("frun_cemaneige",PACKAGE="airgr", ##inputs LInputs=LInputSeries, ### length of input and output series InputsPrecip=InputsModel$LayerPrecip[[iLayer]][IndPeriod1], ### input series of total precipitation [mm/d] InputsFracSolidPrecip=InputsModel$LayerFracSolidPrecip[[iLayer]][IndPeriod1], ### input series of fraction of solid precipitation [0-1] InputsTemp=InputsModel$LayerTemp[[iLayer]][IndPeriod1], ### input series of air mean temperature [degC] MeanAnSolidPrecip=RunOptions$MeanAnSolidPrecip[iLayer], ### value of annual mean solid precip [mm/y] NParam=as.integer(2), ### number of model parameter = 2 Param=ParamCemaNeige, ### parameter set NStates=as.integer(2), ### number of state variables used for model initialising = 2 StateStart=StateStartCemaNeige, ### state variables used when the model run starts NOutputs=as.integer(length(IndOutputsCemaNeige)), ### number of output series IndOutputs=IndOutputsCemaNeige, ### indices of output series ##outputs Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputsCemaNeige)), ### output series [mm] StateEnd=rep(as.double(-999.999),as.integer(2)) ### state variables at the end of the model run (reservoir levels [mm] and HU) ) RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA; RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA; ##Data_storage CemaNeigeLayers[[iLayer]] <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]); names(CemaNeigeLayers[[iLayer]]) <- FortranOutputsCemaNeige[IndOutputsCemaNeige]; IndPliqAndMelt <- which(names(CemaNeigeLayers[[iLayer]]) == "PliqAndMelt"); if(iLayer==1){ CatchMeltAndPliq <- RESULTS$Outputs[,IndPliqAndMelt]/NLayers; } if(iLayer >1){ CatchMeltAndPliq <- CatchMeltAndPliq + RESULTS$Outputs[,IndPliqAndMelt]/NLayers; } if(ExportStateEnd){ CemaNeigeStateEnd <- c(CemaNeigeStateEnd,RESULTS$StateEnd); } rm(RESULTS); } ###ENDFOR_iLayer
141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210
names(CemaNeigeLayers) <- paste("Layer",formatC(1:NLayers,width=2,flag="0"),sep=""); } ###ENDIF_RunSnowModule if(RunOptions$RunSnowModule==FALSE){ CemaNeigeLayers <- list(); CemaNeigeStateEnd <- NULL; NameCemaNeigeLayers <- NULL; CatchMeltAndPliq <- InputsModel$Precip[IndPeriod1]; } ##MODEL______________________________________________________________________________________## if("all" %in% RunOptions$Outputs_Sim){ IndOutputsMod <- as.integer(1:length(FortranOutputsMod)); } else { IndOutputsMod <- which(FortranOutputsMod %in% RunOptions$Outputs_Sim); } ##Use_of_IniResLevels if("IniResLevels" %in% RunOptions){ RunOptions$IniStates[1] <- RunOptions$IniResLevels[2]*ParamMod[3]; ### routing store level (mm) RunOptions$IniStates[2] <- RunOptions$IniResLevels[1]*ParamMod[1]; ### production store level (mm) } ##Call_fortan RESULTS <- .Fortran("frun_gr5j",PACKAGE="airgr", ##inputs LInputs=LInputSeries, ### length of input and output series InputsPrecip=CatchMeltAndPliq, ### input series of total precipitation [mm/d] InputsPE=InputsModel$PotEvap[IndPeriod1], ### input series potential evapotranspiration [mm/d] NParam=NParamMod, ### number of model parameter Param=ParamMod, ### parameter set NStates=NStatesMod, ### number of state variables used for model initialising StateStart=RunOptions$IniStates[1:NStatesMod], ### state variables used when the model run starts NOutputs=as.integer(length(IndOutputsMod)), ### number of output series IndOutputs=IndOutputsMod, ### indices of output series ##outputs Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputsMod)), ### output series [mm] StateEnd=rep(as.double(-999.999),length(RunOptions$IniStates)) ### state variables at the end of the model run ) RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA; RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA; if(RunOptions$RunSnowModule & "Precip" %in% RunOptions$Outputs_Sim){ RESULTS$Outputs[,which(FortranOutputsMod[IndOutputsMod]=="Precip")] <- InputsModel$Precip[IndPeriod1]; } ##Output_data_preparation ##OutputsModel_only if(ExportDatesR==FALSE & ExportStateEnd==FALSE){ OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), list(CemaNeigeLayers) ); names(OutputsModel) <- c(FortranOutputsMod[IndOutputsMod],NameCemaNeigeLayers); } ##DatesR_and_OutputsModel_only if(ExportDatesR==TRUE & ExportStateEnd==FALSE){ OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), list(CemaNeigeLayers) ); names(OutputsModel) <- c("DatesR",FortranOutputsMod[IndOutputsMod],NameCemaNeigeLayers); } ##OutputsModel_and_SateEnd_only if(ExportDatesR==FALSE & ExportStateEnd==TRUE){ OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), list(CemaNeigeLayers), list(c(RESULTS$StateEnd,CemaNeigeStateEnd)) ); names(OutputsModel) <- c(FortranOutputsMod[IndOutputsMod],NameCemaNeigeLayers,"StateEnd"); } ##DatesR_and_OutputsModel_and_SateEnd if(ExportDatesR==TRUE & ExportStateEnd==TRUE){ OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]), lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]), list(CemaNeigeLayers), list(c(RESULTS$StateEnd,CemaNeigeStateEnd)) ); names(OutputsModel) <- c("DatesR",FortranOutputsMod[IndOutputsMod],NameCemaNeigeLayers,"StateEnd"); } ##End rm(RESULTS); class(OutputsModel) <- c("OutputsModel","daily","GR","CemaNeige"); return(OutputsModel); }
211212