Failed to fetch fork details. Try again later.
-
Delaigue Olivier authored60219b28
Forked from
HYCAR-Hydro / airGR
Source project has a limited visibility.
#*****************************************************************************************************************
#' Function which performs a single run for the CemaNeige-GR5J daily lumped model.
#'
#' For further details on the model, see the references section.
#' For further details on the argument structures and initialisation options, see \code{\link{CreateRunOptions}}.
#*****************************************************************************************************************
#' @title Run with the CemaNeigeGR5J hydrological model
#' @author Laurent Coron (December 2013)
#' @references
#' Le Moine, N. (2008), Le bassin versant de surface vu par le souterrain : une voie d'amélioration des performances
#' et du réalisme des modèles pluie-débit ?, PhD thesis (french), UPMC, Paris, France. \cr
#' Pushpalatha, R., C. Perrin, N. Le Moine, T. Mathevet and V. Andréassian (2011),
#' A downward structural sensitivity analysis of hydrological models to improve low-flow simulation,
#' Journal of Hydrology, 411(1-2), 66-76, doi:10.1016/j.jhydrol.2011.09.034. \cr
#' Valéry, A., V. Andréassian and C. Perrin (2014),
#' "As simple as possible but not simpler": what is useful in a temperature-based snow-accounting routine?
#' Part 1 - Comparison of six snow accounting routines on 380 catchments, Journal of Hydrology, doi:10.1016/j.jhydrol.2014.04.059. \cr
#' Valéry, A., V. Andréassian and C. Perrin (2014),
#' "As simple as possible but not simpler": What is useful in a temperature-based snow-accounting routine?
#' Part 2 - Sensitivity analysis of the Cemaneige snow accounting routine on 380 catchments, Journal of Hydrology, doi:10.1016/j.jhydrol.2014.04.058.
#' @seealso \code{\link{RunModel_CemaNeigeGR4J}}, \code{\link{RunModel_CemaNeigeGR6J}}, \code{\link{RunModel_GR5J}},
#' \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}.
#' @example tests/example_RunModel_CemaNeigeGR5J.R
#' @useDynLib airgr
#' @encoding UTF-8
#' @export
#_FunctionInputs__________________________________________________________________________________________________
#' @param InputsModel [object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details
#' @param RunOptions [object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details
#' @param Param [numeric] vector of 7 parameters
#' \tabular{ll}{
#' GR5J X1 \tab production store capacity [mm] \cr
#' GR5J X2 \tab intercatchment exchange coefficient 1 [mm/d] \cr
#' GR5J X3 \tab routing store capacity [mm] \cr
#' GR5J X4 \tab unit hydrograph time constant [d] \cr
#' GR5J X5 \tab intercatchment exchange coefficient 2 [-] \cr
#' CemaNeige X1 \tab weighting coefficient for snow pack thermal state [-] \cr
#' CemaNeige X2 \tab degree-day melt coefficient [mm/degC/d] \cr
#' }
#_FunctionOutputs_________________________________________________________________________________________________
#' @return [list] list containing the function outputs organised as follows:
#' \tabular{ll}{
#' \emph{$DatesR } \tab [POSIXlt] series of dates \cr
#' \emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/d] \cr
#' \emph{$Precip } \tab [numeric] series of input total precipitation [mm/d] \cr
#' \emph{$Prod } \tab [numeric] series of production store level (X(2)) [mm] \cr
#' \emph{$AE } \tab [numeric] series of actual evapotranspiration [mm/d] \cr
#' \emph{$Perc } \tab [numeric] series of percolation (PERC) [mm/d] \cr
#' \emph{$PR } \tab [numeric] series of PR=PN-PS+PERC [mm/d] \cr
#' \emph{$Q9 } \tab [numeric] series of HU1 outflow (Q9) [mm/d] \cr
#' \emph{$Q1 } \tab [numeric] series of HU2 outflow (Q1) [mm/d] \cr
#' \emph{$Rout } \tab [numeric] series of routing store level (X(1)) [mm] \cr
#' \emph{$Exch } \tab [numeric] series of potential semi-exchange between catchments [mm/d] \cr
#' \emph{$AExch } \tab [numeric] series of actual exchange between catchments (1+2) [mm/d] \cr
#' \emph{$QR } \tab [numeric] series of routing store outflow (QR) [mm/d] \cr
#' \emph{$QD } \tab [numeric] series of direct flow from HU2 after exchange (QD) [mm/d] \cr
#' \emph{$Qsim } \tab [numeric] series of Qsim [mm/d] \cr
#' \emph{$CemaNeigeLayers} \tab [list] list of CemaNeige outputs (1 list per layer) \cr
#' \emph{$CemaNeigeLayers[[iLayer]]$Pliq } \tab [numeric] series of liquid precip. [mm/d] \cr
#' \emph{$CemaNeigeLayers[[iLayer]]$Psol } \tab [numeric] series of solid precip. [mm/d] \cr
#' \emph{$CemaNeigeLayers[[iLayer]]$SnowPack } \tab [numeric] series of snow pack [mm] \cr
#' \emph{$CemaNeigeLayers[[iLayer]]$ThermalState } \tab [numeric] series of snow pack thermal state [degC] \cr
#' \emph{$CemaNeigeLayers[[iLayer]]$Gratio } \tab [numeric] series of Gratio [0-1] \cr
#' \emph{$CemaNeigeLayers[[iLayer]]$PotMelt } \tab [numeric] series of potential snow melt [mm/d] \cr
#' \emph{$CemaNeigeLayers[[iLayer]]$Melt } \tab [numeric] series of actual snow melt [mm/d] \cr
#' \emph{$CemaNeigeLayers[[iLayer]]$PliqAndMelt } \tab [numeric] series of liquid precip. + actual snow melt [mm/d] \cr
#' \emph{$StateEnd} \tab [numeric] states at the end of the run: \cr\tab res. & HU levels [mm], CemaNeige states [mm & degC] \cr
#' }
#' (refer to the provided references or to the package source code for further details on these model outputs)
#*****************************************************************************************************************
7172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
RunModel_CemaNeigeGR5J <- function(InputsModel,RunOptions,Param){
NParam <- 7;
FortranOutputsCemaNeige <- c("Pliq","Psol","SnowPack","ThermalState","Gratio","PotMelt","Melt","PliqAndMelt");
FortranOutputsMod <- c("PotEvap","Precip","Prod","AE","Perc","PR","Q9","Q1","Rout","Exch","AExch","QR","QD","Qsim");
##Arguments_check
if(inherits(InputsModel,"InputsModel")==FALSE){ stop("InputsModel must be of class 'InputsModel' \n"); return(NULL); }
if(inherits(InputsModel,"daily" )==FALSE){ stop("InputsModel must be of class 'daily' \n"); return(NULL); }
if(inherits(InputsModel,"GR" )==FALSE){ stop("InputsModel must be of class 'GR' \n"); return(NULL); }
if(inherits(InputsModel,"CemaNeige" )==FALSE){ stop("InputsModel must be of class 'CemaNeige' \n"); return(NULL); }
if(inherits(RunOptions,"RunOptions" )==FALSE){ stop("RunOptions must be of class 'RunOptions' \n"); return(NULL); }
if(inherits(RunOptions,"GR" )==FALSE){ stop("RunOptions must be of class 'GR' \n"); return(NULL); }
if(inherits(RunOptions,"CemaNeige" )==FALSE){ stop("RunOptions must be of class 'CemaNeige' \n"); return(NULL); }
if(!is.vector(Param)){ stop("Param must be a vector \n"); return(NULL); }
if(sum(!is.na(Param))!=NParam){ stop(paste("Param must be a vector of length ",NParam," and contain no NA \n",sep="")); return(NULL); }
Param <- as.double(Param);
##Input_data_preparation
if(identical(RunOptions$IndPeriod_WarmUp,as.integer(0))){ RunOptions$IndPeriod_WarmUp <- NULL; }
IndPeriod1 <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run);
LInputSeries <- as.integer(length(IndPeriod1))
IndPeriod2 <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries;
ParamCemaNeige <- Param[(length(Param)-1):length(Param)];
NParamMod <- as.integer(length(Param)-2);
ParamMod <- Param[1:NParamMod];
NLayers <- length(InputsModel$LayerPrecip);
NStatesMod <- as.integer(length(RunOptions$IniStates)-2*NLayers);
ExportDatesR <- "DatesR" %in% RunOptions$Outputs_Sim;
ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim;
##SNOW_MODULE________________________________________________________________________________##
if(RunOptions$RunSnowModule==TRUE){
if("all" %in% RunOptions$Outputs_Sim){ IndOutputsCemaNeige <- as.integer(1:length(FortranOutputsCemaNeige));
} else { IndOutputsCemaNeige <- which(FortranOutputsCemaNeige %in% RunOptions$Outputs_Sim); }
CemaNeigeLayers <- list(); CemaNeigeStateEnd <- NULL; NameCemaNeigeLayers <- "CemaNeigeLayers";
##Call_DLL_CemaNeige_________________________
for(iLayer in 1:NLayers){
StateStartCemaNeige <- RunOptions$IniStates[ (NStatesMod+2*(iLayer-1)+1):(NStatesMod+2*(iLayer-1)+2) ];
RESULTS <- .Fortran("frun_cemaneige",PACKAGE="airgr",
##inputs
LInputs=LInputSeries, ### length of input and output series
InputsPrecip=InputsModel$LayerPrecip[[iLayer]][IndPeriod1], ### input series of total precipitation [mm/d]
InputsFracSolidPrecip=InputsModel$LayerFracSolidPrecip[[iLayer]][IndPeriod1], ### input series of fraction of solid precipitation [0-1]
InputsTemp=InputsModel$LayerTemp[[iLayer]][IndPeriod1], ### input series of air mean temperature [degC]
MeanAnSolidPrecip=RunOptions$MeanAnSolidPrecip[iLayer], ### value of annual mean solid precip [mm/y]
NParam=as.integer(2), ### number of model parameter = 2
Param=ParamCemaNeige, ### parameter set
NStates=as.integer(2), ### number of state variables used for model initialising = 2
StateStart=StateStartCemaNeige, ### state variables used when the model run starts
NOutputs=as.integer(length(IndOutputsCemaNeige)), ### number of output series
IndOutputs=IndOutputsCemaNeige, ### indices of output series
##outputs
Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputsCemaNeige)), ### output series [mm]
StateEnd=rep(as.double(-999.999),as.integer(2)) ### state variables at the end of the model run (reservoir levels [mm] and HU)
)
RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA;
RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA;
##Data_storage
CemaNeigeLayers[[iLayer]] <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]);
names(CemaNeigeLayers[[iLayer]]) <- FortranOutputsCemaNeige[IndOutputsCemaNeige];
IndPliqAndMelt <- which(names(CemaNeigeLayers[[iLayer]]) == "PliqAndMelt");
if(iLayer==1){ CatchMeltAndPliq <- RESULTS$Outputs[,IndPliqAndMelt]/NLayers; }
if(iLayer >1){ CatchMeltAndPliq <- CatchMeltAndPliq + RESULTS$Outputs[,IndPliqAndMelt]/NLayers; }
if(ExportStateEnd){ CemaNeigeStateEnd <- c(CemaNeigeStateEnd,RESULTS$StateEnd); }
rm(RESULTS);
} ###ENDFOR_iLayer
141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210
names(CemaNeigeLayers) <- paste("Layer",formatC(1:NLayers,width=2,flag="0"),sep="");
} ###ENDIF_RunSnowModule
if(RunOptions$RunSnowModule==FALSE){
CemaNeigeLayers <- list(); CemaNeigeStateEnd <- NULL; NameCemaNeigeLayers <- NULL;
CatchMeltAndPliq <- InputsModel$Precip[IndPeriod1]; }
##MODEL______________________________________________________________________________________##
if("all" %in% RunOptions$Outputs_Sim){ IndOutputsMod <- as.integer(1:length(FortranOutputsMod));
} else { IndOutputsMod <- which(FortranOutputsMod %in% RunOptions$Outputs_Sim); }
##Use_of_IniResLevels
if("IniResLevels" %in% RunOptions){
RunOptions$IniStates[1] <- RunOptions$IniResLevels[2]*ParamMod[3]; ### routing store level (mm)
RunOptions$IniStates[2] <- RunOptions$IniResLevels[1]*ParamMod[1]; ### production store level (mm)
}
##Call_fortan
RESULTS <- .Fortran("frun_gr5j",PACKAGE="airgr",
##inputs
LInputs=LInputSeries, ### length of input and output series
InputsPrecip=CatchMeltAndPliq, ### input series of total precipitation [mm/d]
InputsPE=InputsModel$PotEvap[IndPeriod1], ### input series potential evapotranspiration [mm/d]
NParam=NParamMod, ### number of model parameter
Param=ParamMod, ### parameter set
NStates=NStatesMod, ### number of state variables used for model initialising
StateStart=RunOptions$IniStates[1:NStatesMod], ### state variables used when the model run starts
NOutputs=as.integer(length(IndOutputsMod)), ### number of output series
IndOutputs=IndOutputsMod, ### indices of output series
##outputs
Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputsMod)), ### output series [mm]
StateEnd=rep(as.double(-999.999),length(RunOptions$IniStates)) ### state variables at the end of the model run
)
RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA;
RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA;
if(RunOptions$RunSnowModule & "Precip" %in% RunOptions$Outputs_Sim){ RESULTS$Outputs[,which(FortranOutputsMod[IndOutputsMod]=="Precip")] <- InputsModel$Precip[IndPeriod1]; }
##Output_data_preparation
##OutputsModel_only
if(ExportDatesR==FALSE & ExportStateEnd==FALSE){
OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
list(CemaNeigeLayers) );
names(OutputsModel) <- c(FortranOutputsMod[IndOutputsMod],NameCemaNeigeLayers); }
##DatesR_and_OutputsModel_only
if(ExportDatesR==TRUE & ExportStateEnd==FALSE){
OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
list(CemaNeigeLayers) );
names(OutputsModel) <- c("DatesR",FortranOutputsMod[IndOutputsMod],NameCemaNeigeLayers); }
##OutputsModel_and_SateEnd_only
if(ExportDatesR==FALSE & ExportStateEnd==TRUE){
OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
list(CemaNeigeLayers),
list(c(RESULTS$StateEnd,CemaNeigeStateEnd)) );
names(OutputsModel) <- c(FortranOutputsMod[IndOutputsMod],NameCemaNeigeLayers,"StateEnd"); }
##DatesR_and_OutputsModel_and_SateEnd
if(ExportDatesR==TRUE & ExportStateEnd==TRUE){
OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
list(CemaNeigeLayers),
list(c(RESULTS$StateEnd,CemaNeigeStateEnd)) );
names(OutputsModel) <- c("DatesR",FortranOutputsMod[IndOutputsMod],NameCemaNeigeLayers,"StateEnd"); }
##End
rm(RESULTS);
class(OutputsModel) <- c("OutputsModel","daily","GR","CemaNeige");
return(OutputsModel);
}
211212