Failed to fetch fork details. Try again later.
-
unknown authored10f794b5
Forked from
HYCAR-Hydro / airGR
Source project has a limited visibility.
\encoding{UTF-8}
\name{ErrorCrit_KGE}
\alias{ErrorCrit_KGE}
\title{Error criterion based on the KGE formula}
\usage{
ErrorCrit_KGE(InputsCrit, OutputsModel, warnings = TRUE, verbose = TRUE)
}
\arguments{
\item{InputsCrit}{[object of class \emph{InputsCrit}] see \code{\link{CreateInputsCrit}} for details}
\item{OutputsModel}{[object of class \emph{OutputsModel}] see \code{\link{RunModel_GR4J}} or \code{\link{RunModel_CemaNeigeGR4J}} for details}
\item{warnings}{(optional) [boolean] boolean indicating if the warning messages are shown, default = \code{TRUE}}
\item{verbose}{(optional) [boolean] boolean indicating if the function is run in verbose mode or not, default = \code{TRUE}}
}
\value{
[list] list containing the function outputs organised as follows:
\tabular{ll}{
\emph{$CritValue } \tab [numeric] value of the criterion \cr
\emph{$CritName } \tab [character] name of the criterion \cr
\emph{$SubCritValues } \tab [numeric] values of the sub-criteria \cr
\emph{$SubCritNames } \tab [character] names of the components of the criterion \cr
\emph{$CritBestValue } \tab [numeric] theoretical best criterion value \cr
\emph{$Multiplier } \tab [numeric] integer indicating whether the criterion is indeed an error (+1) or an efficiency (-1) \cr
\emph{$Ind_notcomputed} \tab [numeric] indices of the time steps where InputsCrit$BoolCrit=FALSE or no data is available \cr
}
}
\description{
Function which computes an error criterion based on the KGE formula proposed by Gupta et al. (2009).
}
\details{
In addition to the criterion value, the function outputs include a multiplier (-1 or +1) which allows
the use of the function for model calibration: the product CritValue*Multiplier is the criterion to be minimised (Multiplier=-1 for KGE).\cr\cr
The KGE formula is
\deqn{KGE = 1 - \sqrt{(r - 1)^2 + (\alpha - 1)^2 + (\beta - 1)^2}}{KGE = 1 - sqrt((r - 1)² + (\alpha - 1)² + (\beta - 1)²)}
with the following sub-criteria:
\deqn{r = \mathrm{the\: linear\: correlation\: coefficient\: between\:} sim\: \mathrm{and\:} obs}{r = the linear correlation coefficient between Q[sim] and Q[obs]}
\deqn{\alpha = \frac{\sigma_{sim}}{\sigma_{obs}}}{\alpha = \sigma[sim] / \sigma[obs]}
\deqn{\beta = \frac{\mu_{sim}}{\mu_{obs}}}{\beta = \mu[sim] / \mu[obs]}
}
\examples{
## see example of the ErrorCrit function
}
\author{
Laurent Coron
}
\references{
Gupta, H. V., Kling, H., Yilmaz, K. K. and Martinez, G. F. (2009),
Decomposition of the mean squared error and NSE performance criteria: Implications
for improving hydrological modelling, Journal of Hydrology, 377(1-2), 80-91, doi:10.1016/j.jhydrol.2009.08.003. \cr
}
\seealso{
\code{\link{ErrorCrit}}, \code{\link{ErrorCrit_RMSE}}, \code{\link{ErrorCrit_NSE}}, \code{\link{ErrorCrit_KGE2}}
}