Forked from HYCAR-Hydro / airGR
1446 commits behind the upstream repository.
RunModel_CemaNeigeGR4J.Rd 8.02 KiB
\encoding{UTF-8}
\name{RunModel_CemaNeigeGR4J}
\alias{RunModel_CemaNeigeGR4J}
\title{Run with the CemaNeigeGR4J hydrological model}
\usage{
RunModel_CemaNeigeGR4J(InputsModel, RunOptions, Param)
\arguments{
\item{InputsModel}{[object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details}
\item{RunOptions}{[object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details}
\item{Param}{[numeric] vector of 6 parameters
\tabular{ll}{                                                                      
GR4J X1      \tab production store capacity [mm]                                \cr
GR4J X2      \tab intercatchment exchange coefficient [mm/d]                    \cr
GR4J X3      \tab routing store capacity [mm]                                   \cr
GR4J X4      \tab unit hydrograph time constant [d]                             \cr
CemaNeige X1 \tab weighting coefficient for snow pack thermal state [-]         \cr
CemaNeige X2 \tab degree-day melt coefficient [mm/°C/d]                       \cr
\value{
[list] list containing the function outputs organised as follows:                                         
         \tabular{ll}{                                                                                         
         \emph{$DatesR  }          \tab [POSIXlt] series of dates                                                     \cr
         \emph{$PotEvap }          \tab [numeric] series of input potential evapotranspiration [mm/d]                 \cr
         \emph{$Precip  }          \tab [numeric] series of input total precipitation [mm/d]                          \cr
         \emph{$Prod    }          \tab [numeric] series of production store level [mm]                        \cr
         \emph{$Pn      }          \tab [numeric] series of net rainfall [mm/d]                         			  \cr
         \emph{$Ps      }          \tab [numeric] series of the part of Ps filling the production store [mm/d]        \cr
         \emph{$AE      }          \tab [numeric] series of actual evapotranspiration [mm/d]                          \cr
         \emph{$Perc    }          \tab [numeric] series of percolation (PERC) [mm/d]                                 \cr
         \emph{$PR      }          \tab [numeric] series of PR=PN-PS+PERC [mm/d]                                      \cr
         \emph{$Q9      }          \tab [numeric] series of UH1 outflow (Q9) [mm/d]                                   \cr
         \emph{$Q1      }          \tab [numeric] series of UH2 outflow (Q1) [mm/d]                                   \cr
         \emph{$Rout    }          \tab [numeric] series of routing store level [mm]                           \cr
         \emph{$Exch    }          \tab [numeric] series of potential semi-exchange between catchments [mm/d]         \cr
         \emph{$AExch1  }          \tab [numeric] series of actual exchange between catchments for branch 1 [mm/d]    \cr
         \emph{$AExch2  }          \tab [numeric] series of actual exchange between catchments for branch 2 [mm/d]    \cr
         \emph{$AExch   }          \tab [numeric] series of actual exchange between catchments (1+2) [mm/d]           \cr
         \emph{$QR      }          \tab [numeric] series of routing store outflow (QR) [mm/d]                         \cr
         \emph{$QD      }          \tab [numeric] series of direct flow from UH2 after exchange (QD) [mm/d]           \cr
         \emph{$Qsim    }          \tab [numeric] series of Qsim [mm/d]                                               \cr
         \emph{$CemaNeigeLayers}   \tab [list] list of CemaNeige outputs (1 list per layer)                          \cr
         \emph{$CemaNeigeLayers[[iLayer]]$Pliq         }   \tab [numeric] series of liquid precip. [mm/d]                          \cr
         \emph{$CemaNeigeLayers[[iLayer]]$Psol         }   \tab [numeric] series of solid precip. [mm/d]                           \cr
         \emph{$CemaNeigeLayers[[iLayer]]$SnowPack     }   \tab [numeric] series of snow pack [mm]                                 \cr
         \emph{$CemaNeigeLayers[[iLayer]]$ThermalState }   \tab [numeric] series of snow pack thermal state [°C]                 \cr
         \emph{$CemaNeigeLayers[[iLayer]]$Gratio       }   \tab [numeric] series of Gratio [0-1]                                   \cr
         \emph{$CemaNeigeLayers[[iLayer]]$PotMelt      }   \tab [numeric] series of potential snow melt [mm/d]                     \cr
         \emph{$CemaNeigeLayers[[iLayer]]$Melt         }   \tab [numeric] series of actual snow melt [mm/d]                        \cr
         \emph{$CemaNeigeLayers[[iLayer]]$PliqAndMelt  }   \tab [numeric] series of liquid precip. + actual snow melt [mm/d]       \cr
         \emph{$CemaNeigeLayers[[iLayer]]$Temp         }   \tab [numeric] series of air temperature [°C] \cr     
         \emph{$StateEnd}                                  \tab [numeric] states at the end of the run: \cr\tab store & unit hydrographs levels [mm], CemaNeige states [mm & °C] \cr
         (refer to the provided references or to the package source code for further details on these model outputs)
\description{
Function which performs a single run for the CemaNeige-GR4J daily lumped model over the test period.
\details{
For further details on the model, see the references section.
For further details on the argument structures and initialisation options, see \code{\link{CreateRunOptions}}.
\examples{
library(airGR)
## loading catchment data
data(L0123002)
7172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118
## preparation of the InputsModel object InputsModel <- CreateInputsModel(FUN_MOD = RunModel_CemaNeigeGR4J, DatesR = BasinObs$DatesR, Precip = BasinObs$P, PotEvap = BasinObs$E, TempMean = BasinObs$T, ZInputs = median(BasinInfo$HypsoData), HypsoData = BasinInfo$HypsoData, NLayers = 5) ## run period selection Ind_Run <- seq(which(format(BasinObs$DatesR, format = "\%d/\%m/\%Y \%H:\%M")=="01/01/1990 00:00"), which(format(BasinObs$DatesR, format = "\%d/\%m/\%Y \%H:\%M")=="31/12/1999 00:00")) ## preparation of the RunOptions object RunOptions <- CreateRunOptions(FUN_MOD = RunModel_CemaNeigeGR4J, InputsModel = InputsModel, IndPeriod_Run = Ind_Run) ## simulation Param <- c(408.774, 2.646, 131.264, 1.174, 0.962, 2.249) OutputsModel <- RunModel_CemaNeigeGR4J(InputsModel = InputsModel, RunOptions = RunOptions, Param = Param) ## results preview plot(OutputsModel, Qobs = BasinObs$Qmm[Ind_Run]) ## efficiency criterion: Nash-Sutcliffe Efficiency InputsCrit <- CreateInputsCrit(FUN_CRIT = ErrorCrit_NSE, InputsModel = InputsModel, RunOptions = RunOptions, Qobs = BasinObs$Qmm[Ind_Run]) OutputsCrit <- ErrorCrit_NSE(InputsCrit = InputsCrit, OutputsModel = OutputsModel) } \author{ Laurent Coron, Audrey Valéry, Claude Michel, Charles Perrin, Vazken Andréassian (December 2013) } \references{ Perrin, C., C. Michel and V. Andréassian (2003), Improvement of a parsimonious model for streamflow simulation, Journal of Hydrology, 279(1-4), 275-289, doi:10.1016/S0022-1694(03)00225-7. \cr Valéry, A., V. Andréassian and C. Perrin (2014), "As simple as possible but not simpler": what is useful in a temperature-based snow-accounting routine? Part 1 - Comparison of six snow accounting routines on 380 catchments, Journal of Hydrology, doi:10.1016/j.jhydrol.2014.04.059. \cr Valéry, A., V. Andréassian and C. Perrin (2014), "As simple as possible but not simpler": What is useful in a temperature-based snow-accounting routine? Part 2 - Sensitivity analysis of the Cemaneige snow accounting routine on 380 catchments, Journal of Hydrology, doi:10.1016/j.jhydrol.2014.04.058. } \seealso{ \code{\link{RunModel_CemaNeigeGR5J}}, \code{\link{RunModel_CemaNeigeGR6J}}, \code{\link{RunModel_GR4J}}, \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}. }