Forked from HYCAR-Hydro / airGR
Source project has a limited visibility.
RunModel_GR4H.Rd 5.34 KiB
\encoding{UTF-8}
\name{RunModel_GR4H}
\alias{RunModel_GR4H}
\title{Run with the GR4H hydrological model}
\description{
Function which performs a single run for the GR4H hourly lumped model.
\usage{
RunModel_GR4H(InputsModel, RunOptions, Param)
\arguments{
\item{InputsModel}{[object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details}
\item{RunOptions}{[object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details}
\item{Param}{[numeric] vector of 4 parameters
  \tabular{ll}{
    GR4H X1 \tab production store capacity [mm]          \cr
    GR4H X2 \tab groundwater exchange coefficient [mm/h] \cr
    GR4H X3 \tab routing store capacity [mm]             \cr
    GR4H X4 \tab unit hydrograph time constant [h]       \cr
\value{
[list] containing the function outputs organised as follows:
  \tabular{ll}{
    \emph{$DatesR  } \tab [POSIXlt] series of dates                                                     \cr
    \emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration (E) [mm/h]             \cr
    \emph{$Precip  } \tab [numeric] series of input total precipitation (P) [mm/h]                      \cr
    \emph{$Prod    } \tab [numeric] series of production store level [mm] (S)                           \cr
    \emph{$Pn      } \tab [numeric] series of net rainfall (Pn) [mm/h]                                  \cr
    \emph{$Ps      } \tab [numeric] series of the part of Pn filling the production store (Ps) [mm/h    \cr
    \emph{$AE      } \tab [numeric] series of actual evapotranspiration [mm/h]                          \cr
    \emph{$Perc    } \tab [numeric] series of percolation (Perc) [mm/h]                                 \cr
    \emph{$PR      } \tab [numeric] series of Pr=Pn-Ps+Perc (Pr) [mm/h]                                 \cr
    \emph{$Q9      } \tab [numeric] series of UH1 outflow (Q9) [mm/h]                                   \cr
    \emph{$Q1      } \tab [numeric] series of UH2 outflow (Q1) [mm/h]                                   \cr
    \emph{$Rout    } \tab [numeric] series of routing store level (R1) [mm]                             \cr
    \emph{$Exch    } \tab [numeric] series of potential semi-exchange between catchments [mm/h]         \cr
    \emph{$AExch1  } \tab [numeric] series of actual exchange between catchments for branch 1 [mm/h]    \cr
    \emph{$AExch2  } \tab [numeric] series of actual exchange between catchments for branch 2 [mm/h]    \cr
    \emph{$AExch   } \tab [numeric] series of actual exchange between catchments (AExch1+AExch2) [mm/h] \cr
    \emph{$QR      } \tab [numeric] series of routing store outflow (Qr) [mm/h]                         \cr
    \emph{$QD      } \tab [numeric] series of direct flow from UH2 after exchange (Qd) [mm/h]           \cr
    \emph{$Qsim    } \tab [numeric] series of simulated discharge (Q) [mm/h]                            \cr
    \emph{$StateEnd} \tab [numeric] states at the end of the run (res. levels, UH1 levels, UH2 levels) [mm]. See \code{\link{CreateIniStates}} for more details \cr
Refer to the provided references or to the package source code for further details on these model outputs.
\details{
For further details on the model, see the references section. \cr
For further details on the argument structures and initialisation options, see \code{\link{CreateRunOptions}}.
\cr
\cr
See \code{\link{RunModel_GR4J}} to look at the diagram of the hydrological model.
7172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128
\examples{ library(airGR) ## load of catchment data data(L0123003) ## preparation of the InputsModel object InputsModel <- CreateInputsModel(FUN_MOD = RunModel_GR4H, DatesR = BasinObs$DatesR, Precip = BasinObs$P, PotEvap = BasinObs$E) ## run period selection Ind_Run <- seq(which(format(BasinObs$DatesR, format = "\%Y-\%m-\%d \%H:\%M")=="2004-03-01 00:00"), which(format(BasinObs$DatesR, format = "\%Y-\%m-\%d \%H:\%M")=="2008-12-31 23:00")) ## preparation of the RunOptions object RunOptions <- CreateRunOptions(FUN_MOD = RunModel_GR4H, InputsModel = InputsModel, IndPeriod_Run = Ind_Run) ## simulation Param <- c(X1 = 521.113, X2 = -2.918, X3 = 218.009, X4 = 4.124) OutputsModel <- RunModel_GR4H(InputsModel = InputsModel, RunOptions = RunOptions, Param = Param) ## results preview plot(OutputsModel, Qobs = BasinObs$Qmm[Ind_Run]) ## efficiency criterion: Nash-Sutcliffe Efficiency InputsCrit <- CreateInputsCrit(FUN_CRIT = ErrorCrit_NSE, InputsModel = InputsModel, RunOptions = RunOptions, Obs = BasinObs$Qmm[Ind_Run]) OutputsCrit <- ErrorCrit_NSE(InputsCrit = InputsCrit, OutputsModel = OutputsModel) } \author{ Laurent Coron, Charles Perrin, Thibaut Mathevet, Olivier Delaigue, Guillaume Thirel } \references{ Mathevet, T. (2005). Quels modèles pluie-débit globaux pour le pas de temps horaire ? Développement empirique et comparaison de modèles sur un large échantillon de bassins versants. PhD thesis (in French), ENGREF - Cemagref Antony, Paris, France. \cr\cr Le Moine, N. (2008). Le bassin versant de surface vu par le souterrain : une voie d'amélioration des performances et du réalisme des modèles pluie-débit ? PhD thesis (in French), UPMC - Cemagref Antony, Paris, France. } \seealso{ \code{\link{RunModel_GR4J}}, \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}, \code{\link{CreateIniStates}}. }