Commit 7cc62c5a authored by Delaigue Olivier's avatar Delaigue Olivier
Browse files

v1.2.12.22 UPDATE: ErrorCrit* funs and many examples in doc now use Obs...

v1.2.12.22 UPDATE: ErrorCrit* funs and many examples in doc now use Obs argument of CreateRunOptions instead obs or Qobs
Showing with 48 additions and 48 deletions
+48 -48
Package: airGR
Type: Package
Title: Suite of GR Hydrological Models for Precipitation-Runoff Modelling
Version: 1.2.12.21
Version: 1.2.12.22
Date: 2019-04-01
Authors@R: c(
person("Laurent", "Coron", role = c("aut", "trl"), comment = c(ORCID = "0000-0002-1503-6204")),
......
......@@ -13,7 +13,7 @@ output:
### 1.2.12.21 Release Notes (2019-04-01)
### 1.2.12.22 Release Notes (2019-04-01)
......
......@@ -39,7 +39,7 @@ ErrorCrit_KGE <- function(InputsCrit, OutputsModel, warnings = TRUE, verbose = T
##Data_preparation_______________________________
VarObs <- InputsCrit$obs
VarObs <- InputsCrit$Obs
VarObs[!InputsCrit$BoolCrit] <- NA
if (InputsCrit$varObs == "Q") {
VarSim <- OutputsModel$Qsim
......
......@@ -39,7 +39,7 @@ ErrorCrit_KGE2 <- function(InputsCrit, OutputsModel, warnings = TRUE, verbose =
##Data_preparation_______________________________
VarObs <- InputsCrit$obs
VarObs <- InputsCrit$Obs
VarObs[!InputsCrit$BoolCrit] <- NA
if (InputsCrit$varObs == "Q") {
VarSim <- OutputsModel$Qsim
......
......@@ -39,7 +39,7 @@ ErrorCrit_NSE <- function(InputsCrit, OutputsModel, warnings = TRUE, verbose = T
##Data_preparation_______________________________
VarObs <- InputsCrit$obs
VarObs <- InputsCrit$Obs
VarObs[!InputsCrit$BoolCrit] <- NA
if (InputsCrit$varObs == "Q") {
VarSim <- OutputsModel$Qsim
......
......@@ -39,7 +39,7 @@ ErrorCrit_RMSE <- function(InputsCrit, OutputsModel, warnings = TRUE, verbose =
##Data_preparation_______________________________
VarObs <- InputsCrit$obs
VarObs <- InputsCrit$Obs
VarObs[!InputsCrit$BoolCrit] <- NA
if (InputsCrit$varObs == "Q") {
VarSim <- OutputsModel$Qsim
......
......@@ -65,7 +65,7 @@ RunOptions <- CreateRunOptions(FUN_MOD = RunModel_GR4J,
## calibration criterion: preparation of the InputsCrit object
InputsCrit <- CreateInputsCrit(FUN_CRIT = ErrorCrit_NSE, InputsModel = InputsModel,
RunOptions = RunOptions, obs = BasinObs$Qmm[Ind_Run], varObs = "Q")
RunOptions = RunOptions, Obs = BasinObs$Qmm[Ind_Run], varObs = "Q")
## preparation of CalibOptions object
CalibOptions <- CreateCalibOptions(FUN_MOD = RunModel_GR4J, FUN_CALIB = Calibration_Michel)
......@@ -86,12 +86,12 @@ plot(OutputsModel, Qobs = BasinObs$Qmm[Ind_Run])
## efficiency criterion: Nash-Sutcliffe Efficiency
InputsCrit <- CreateInputsCrit(FUN_CRIT = ErrorCrit_NSE, InputsModel = InputsModel,
RunOptions = RunOptions, obs = BasinObs$Qmm[Ind_Run], varObs = "Q")
RunOptions = RunOptions, Obs = BasinObs$Qmm[Ind_Run], varObs = "Q")
OutputsCrit <- ErrorCrit_NSE(InputsCrit = InputsCrit, OutputsModel = OutputsModel)
## efficiency criterion: Kling-Gupta Efficiency
InputsCrit <- CreateInputsCrit(FUN_CRIT = ErrorCrit_KGE, InputsModel = InputsModel,
RunOptions = RunOptions, obs = BasinObs$Qmm[Ind_Run], varObs = "Q")
RunOptions = RunOptions, Obs = BasinObs$Qmm[Ind_Run], varObs = "Q")
OutputsCrit <- ErrorCrit_KGE(InputsCrit = InputsCrit, OutputsModel = OutputsModel)
}
......
......@@ -96,7 +96,7 @@ RunOptions <- CreateRunOptions(FUN_MOD = RunModel_GR4J, InputsModel = InputsMode
## calibration criterion: preparation of the InputsCrit object
InputsCrit <- CreateInputsCrit(FUN_CRIT = ErrorCrit_NSE, InputsModel = InputsModel,
RunOptions = RunOptions, obs = BasinObs$Qmm[Ind_Run], varObs = "Q")
RunOptions = RunOptions, Obs = BasinObs$Qmm[Ind_Run], varObs = "Q")
## preparation of CalibOptions object
CalibOptions <- CreateCalibOptions(FUN_MOD = RunModel_GR4J, FUN_CALIB = Calibration_Michel)
......@@ -116,12 +116,12 @@ plot(OutputsModel, Qobs = BasinObs$Qmm[Ind_Run])
## efficiency criterion: Nash-Sutcliffe Efficiency
InputsCrit <- CreateInputsCrit(FUN_CRIT = ErrorCrit_NSE, InputsModel = InputsModel,
RunOptions = RunOptions, obs = BasinObs$Qmm[Ind_Run], varObs = "Q")
RunOptions = RunOptions, Obs = BasinObs$Qmm[Ind_Run], varObs = "Q")
OutputsCrit <- ErrorCrit_NSE(InputsCrit = InputsCrit, OutputsModel = OutputsModel)
## efficiency criterion: Kling-Gupta Efficiency
InputsCrit <- CreateInputsCrit(FUN_CRIT = ErrorCrit_KGE, InputsModel = InputsModel,
RunOptions = RunOptions, obs = BasinObs$Qmm[Ind_Run], varObs = "Q")
RunOptions = RunOptions, Obs = BasinObs$Qmm[Ind_Run], varObs = "Q")
OutputsCrit <- ErrorCrit_KGE(InputsCrit = InputsCrit, OutputsModel = OutputsModel)
}
......
......@@ -105,7 +105,7 @@ RunOptions <- CreateRunOptions(FUN_MOD = RunModel_GR4J,
## calibration criterion: preparation of the InputsCrit object
InputsCrit <- CreateInputsCrit(FUN_CRIT = ErrorCrit_NSE, InputsModel = InputsModel,
RunOptions = RunOptions, obs = BasinObs$Qmm[Ind_Run], varObs = "Q")
RunOptions = RunOptions, Obs = BasinObs$Qmm[Ind_Run], varObs = "Q")
## preparation of CalibOptions object
CalibOptions <- CreateCalibOptions(FUN_MOD = RunModel_GR4J, FUN_CALIB = Calibration_Michel)
......@@ -126,12 +126,12 @@ plot(OutputsModel, Qobs = BasinObs$Qmm[Ind_Run])
## efficiency criterion: Nash-Sutcliffe Efficiency
InputsCrit <- CreateInputsCrit(FUN_CRIT = ErrorCrit_NSE, InputsModel = InputsModel,
RunOptions = RunOptions, obs = BasinObs$Qmm[Ind_Run], varObs = "Q")
RunOptions = RunOptions, Obs = BasinObs$Qmm[Ind_Run], varObs = "Q")
OutputsCrit <- ErrorCrit_NSE(InputsCrit = InputsCrit, OutputsModel = OutputsModel)
## efficiency criterion: Kling-Gupta Efficiency
InputsCrit <- CreateInputsCrit(FUN_CRIT = ErrorCrit_KGE, InputsModel = InputsModel,
RunOptions = RunOptions, obs = BasinObs$Qmm[Ind_Run], varObs = "Q")
RunOptions = RunOptions, Obs = BasinObs$Qmm[Ind_Run], varObs = "Q")
OutputsCrit <- ErrorCrit_KGE(InputsCrit = InputsCrit, OutputsModel = OutputsModel)
}
......
......@@ -10,7 +10,7 @@
\usage{
CreateInputsCrit(FUN_CRIT, InputsModel, RunOptions,
Qobs, obs, varObs = "Q", BoolCrit = NULL,
Qobs, Obs, varObs = "Q", BoolCrit = NULL,
transfo = "", weights = NULL,
Ind_zeroes = NULL, epsilon = NULL,
warnings = TRUE, verbose = TRUE)
......@@ -26,11 +26,11 @@ CreateInputsCrit(FUN_CRIT, InputsModel, RunOptions,
\item{Qobs}{(deprecated) [numeric (atomic or list)] series of observed discharges [mm/time step]}
\item{obs}{[numeric (atomic or list)] series of observed variable ([mm/time step] for discharge or SWE, [-] for SCA)}
\item{Obs}{[numeric (atomic or list)] series of observed variable ([mm/time step] for discharge or SWE, [-] for SCA)}
\item{varObs}{(optional) [character (atomic or list)] names of the observed variable (\code{"Q"} by default, or one of \code{"SCA"}, \code{"SWE"}])}
\item{BoolCrit}{(optional) [boolean (atomic or list)] boolean (the same length as \code{obs}) giving the time steps to consider in the computation (all time steps are considered by default)}
\item{BoolCrit}{(optional) [boolean (atomic or list)] boolean (the same length as \code{Obs}) giving the time steps to consider in the computation (all time steps are considered by default)}
\item{transfo}{(optional) [character (atomic or list)] name of the transformation (e.g. \code{""}, \code{"sqrt"}, \code{"log"}, \code{"inv"}, \code{"sort"})}
......@@ -38,7 +38,7 @@ CreateInputsCrit(FUN_CRIT, InputsModel, RunOptions,
\item{Ind_zeroes}{(deprecated) [numeric] indices of the time steps where zeroes are observed}
\item{epsilon}{(optional) [numeric (atomic or list)] small value to add to all observations and simulations when \code{"log"} or \code{"inv"} transformations are used [same unit as \code{obs}]. See details}
\item{epsilon}{(optional) [numeric (atomic or list)] small value to add to all observations and simulations when \code{"log"} or \code{"inv"} transformations are used [same unit as \code{Obs}]. See details}
\item{warnings}{(optional) [boolean] boolean indicating if the warning messages are shown, default = \code{TRUE}}
......@@ -50,16 +50,16 @@ CreateInputsCrit(FUN_CRIT, InputsModel, RunOptions,
[list] object of class \emph{InputsCrit} containing the data required to evaluate the model outputs; it can include the following:
\tabular{ll}{
\emph{$FUN_CRIT } \tab [function] error criterion function (e.g. \code{\link{ErrorCrit_RMSE}}, \code{\link{ErrorCrit_NSE}}) \cr
\emph{$obs } \tab [numeric] series of observed variable(s) ([mm/time step] for discharge or SWE, [-] for SCA) \cr
\emph{$Obs } \tab [numeric] series of observed variable(s) ([mm/time step] for discharge or SWE, [-] for SCA) \cr
\emph{$varObs } \tab [character] names of the observed variable(s) \cr
\emph{$BoolCrit } \tab [boolean] boolean giving the time steps considered in the computation \cr
\emph{$transfo } \tab [character] name of the transformation (e.g. \code{""}, \code{"sqrt"}, \code{"log"}, \code{"inv"}, \code{"sort"}) \cr
\emph{$epsilon } \tab [numeric] small value to add to all observations and simulations when \code{"log"} or \code{"inv"} transformations are used [same unit as \code{obs}] \cr
\emph{$epsilon } \tab [numeric] small value to add to all observations and simulations when \code{"log"} or \code{"inv"} transformations are used [same unit as \code{Obs}] \cr
\emph{$weights } \tab [numeric] vector (same length as \code{varObs}) giving the weights to use for elements of \code{FUN_CRIT} [-] \cr
}
When \code{weights = NULL}, \code{CreateInputsCrit} returns an object of class \emph{Single} that is a list such as the one described above. \cr
When \code{weights} contains at least one \code{NULL} value and \code{obs} contains a list of observations, \code{CreateInputsCrit} returns an object of class \emph{Multi} that is a list of lists such as the one described above. The \code{\link{ErrorCrit}} function will then compute the different criteria prepared by \code{CreateInputsCrit}. \cr
When \code{weights} contains at least one \code{NULL} value and \code{Obs} contains a list of observations, \code{CreateInputsCrit} returns an object of class \emph{Multi} that is a list of lists such as the one described above. The \code{\link{ErrorCrit}} function will then compute the different criteria prepared by \code{CreateInputsCrit}. \cr
When \code{weights} is a list of at least 2 numerical values, \code{CreateInputsCrit} returns an object of class \emph{Compo} that is a list of lists such as the one described above. This object will be useful to compute composite criterion with the \code{\link{ErrorCrit}} function. \cr
To calculate composite or multiple criteria, it is necessary to use the \code{ErrorCrit} function. The other \code{ErrorCrit_*} functions (e.g. \code{\link{ErrorCrit_RMSE}}, \code{\link{ErrorCrit_NSE}}) can only use objects of class \emph{Single} (and not \emph{Multi} or \emph{Compo}). \cr
}
......@@ -74,7 +74,7 @@ Creation of the \code{InputsCrit} object required to the \code{ErrorCrit_*} func
Users wanting to use \code{FUN_CRIT} functions that are not included in the package must create their own InputsCrit object accordingly. \cr \cr
The epsilon value is useful when \code{"log"} or \code{"inv"} transformations are used (to avoid calculation of the inverse or of the logarithm of zero). The impact of this value and a recommendation about the epsilon value to use (usually one hundredth of average observation) are discussed in Pushpalatha et al. (2012) for NSE and in Santos et al. (2018) for KGE and KGE'. \cr \cr
We do not advise computing KGE or KGE' with log-transformation as it might be wrongly influenced by discharge values close to 0 or 1 and the criterion value is dependent on the discharge unit. See Santos et al. (2018) for more details and alternative solutions (see the references list below). \cr \cr
Users can set the following arguments as atomic or list: \code{FUN_CRIT}, \code{obs}, \code{varObs}, \code{BoolCrit}, \code{transfo}, \code{weights}. If the list format is chosen, all the lists must have the same length. \cr
Users can set the following arguments as atomic or list: \code{FUN_CRIT}, \code{Obs}, \code{varObs}, \code{BoolCrit}, \code{transfo}, \code{weights}. If the list format is chosen, all the lists must have the same length. \cr
Calculation of a single criterion (e.g. NSE computed on discharge) is prepared by providing to \code{CreateInputsCrit} arguments atomics only. \cr
Calculation of multiple criteria (e.g. NSE computed on discharge and RMSE computed on discharge) is prepared by providing to \code{CreateInputsCrit} arguments lists except for \code{weights} that must be set as \code{NULL}. \cr
Calculation of a composite criterion (e.g. the average between NSE computed on dscharge and NSE computed on log of discharge) is prepared by providing to \code{CreateInputsCrit} arguments lists including \code{weights}. \cr
......@@ -107,7 +107,7 @@ OutputsModel <- RunModel_GR4J(InputsModel = InputsModel, RunOptions = RunOptions
## single efficiency criterion: Nash-Sutcliffe Efficiency
InputsCritSingle <- CreateInputsCrit(FUN_CRIT = ErrorCrit_NSE,
InputsModel = InputsModel, RunOptions = RunOptions,
obs = list(BasinObs$Qmm[Ind_Run]),
Obs = list(BasinObs$Qmm[Ind_Run]),
varObs = "Q", transfo = "",
weights = NULL)
str(InputsCritSingle)
......@@ -116,7 +116,7 @@ invisible(ErrorCrit(InputsCrit = InputsCritSingle, OutputsModel = OutputsModel))
## 2 efficiency criteria: RMSE and Nash-Sutcliffe Efficiency
InputsCritMulti <- CreateInputsCrit(FUN_CRIT = list(ErrorCrit_RMSE, ErrorCrit_NSE),
InputsModel = InputsModel, RunOptions = RunOptions,
obs = list(BasinObs$Qmm[Ind_Run], BasinObs$Qmm[Ind_Run]),
Obs = list(BasinObs$Qmm[Ind_Run], BasinObs$Qmm[Ind_Run]),
varObs = list("Q", "Q"), transfo = list("", "sqrt"),
weights = NULL)
str(InputsCritMulti)
......@@ -126,7 +126,7 @@ invisible(ErrorCrit(InputsCrit = InputsCritMulti, OutputsModel = OutputsModel))
## both raw and log-transformed flows
InputsCritCompo <- CreateInputsCrit(FUN_CRIT = list(ErrorCrit_NSE, ErrorCrit_NSE),
InputsModel = InputsModel, RunOptions = RunOptions,
obs = list(BasinObs$Qmm[Ind_Run], BasinObs$Qmm[Ind_Run]),
Obs = list(BasinObs$Qmm[Ind_Run], BasinObs$Qmm[Ind_Run]),
varObs = list("Q", "Q"), transfo = list("", "log"),
weights = list(0.4, 0.6))
str(InputsCritCompo)
......
......@@ -95,7 +95,7 @@ plot(OutputsModel, Qobs = BasinObs$Qmm[Ind_Run])
## efficiency criterion: Nash-Sutcliffe Efficiency
InputsCrit <- CreateInputsCrit(FUN_CRIT = ErrorCrit_NSE, InputsModel = InputsModel,
RunOptions = RunOptions, obs = BasinObs$Qmm[Ind_Run], varObs = "Q")
RunOptions = RunOptions, Obs = BasinObs$Qmm[Ind_Run], varObs = "Q")
OutputsCrit <- ErrorCrit_NSE(InputsCrit = InputsCrit, OutputsModel = OutputsModel)
}
......
......@@ -145,7 +145,7 @@ plot(OutputsModel, Qobs = BasinObs$Qmm[Ind_Run])
## efficiency criterion: Nash-Sutcliffe Efficiency
InputsCrit <- CreateInputsCrit(FUN_CRIT = ErrorCrit_NSE, InputsModel = InputsModel,
RunOptions = RunOptions,
obs = BasinObs$Qmm[Ind_Run], varObs = "Q")
Obs = BasinObs$Qmm[Ind_Run], varObs = "Q")
OutputsCrit <- ErrorCrit_NSE(InputsCrit = InputsCrit, OutputsModel = OutputsModel)
}
......
......@@ -82,7 +82,7 @@ OutputsModel <- RunModel_GR4J(InputsModel = InputsModel,
## single efficiency criterion: Nash-Sutcliffe Efficiency
InputsCritSingle <- CreateInputsCrit(FUN_CRIT = ErrorCrit_NSE,
InputsModel = InputsModel, RunOptions = RunOptions,
obs = list(BasinObs$Qmm[Ind_Run]),
Obs = list(BasinObs$Qmm[Ind_Run]),
varObs = "Q", transfo = "",
weight = NULL)
str(ErrorCrit(InputsCrit = InputsCritSingle, OutputsModel = OutputsModel))
......@@ -90,7 +90,7 @@ str(ErrorCrit(InputsCrit = InputsCritSingle, OutputsModel = OutputsModel))
## 2 efficiency critera: RMSE and the Nash-Sutcliffe Efficiency
InputsCritMulti <- CreateInputsCrit(FUN_CRIT = list(ErrorCrit_RMSE, ErrorCrit_NSE),
InputsModel = InputsModel, RunOptions = RunOptions,
obs = list(BasinObs$Qmm[Ind_Run], BasinObs$Qmm[Ind_Run]),
Obs = list(BasinObs$Qmm[Ind_Run], BasinObs$Qmm[Ind_Run]),
varObs = list("Q", "Q"), transfo = list("", "sqrt"),
weight = NULL)
str(ErrorCrit(InputsCrit = InputsCritMulti, OutputsModel = OutputsModel))
......@@ -99,7 +99,7 @@ str(ErrorCrit(InputsCrit = InputsCritMulti, OutputsModel = OutputsModel))
## both raw and log-transformed flows
InputsCritCompo <- CreateInputsCrit(FUN_CRIT = list(ErrorCrit_NSE, ErrorCrit_NSE),
InputsModel = InputsModel, RunOptions = RunOptions,
obs = list(BasinObs$Qmm[Ind_Run], BasinObs$Qmm[Ind_Run]),
Obs = list(BasinObs$Qmm[Ind_Run], BasinObs$Qmm[Ind_Run]),
varObs = list("Q", "Q"), transfo = list("", "log"),
weight = list(0.4, 0.6))
str(ErrorCrit(InputsCrit = InputsCritCompo, OutputsModel = OutputsModel))
......
......@@ -80,20 +80,20 @@ OutputsModel <- RunModel(InputsModel = InputsModel, RunOptions = RunOptions,
## efficiency criterion: Kling-Gupta Efficiency
InputsCrit <- CreateInputsCrit(FUN_CRIT = ErrorCrit_KGE, InputsModel = InputsModel,
RunOptions = RunOptions, obs = BasinObs$Qmm[Ind_Run])
RunOptions = RunOptions, Obs = BasinObs$Qmm[Ind_Run])
OutputsCrit <- ErrorCrit_KGE(InputsCrit = InputsCrit, OutputsModel = OutputsModel)
## efficiency criterion: Kling-Gupta Efficiency on square-root-transformed flows
transfo <- "sqrt"
InputsCrit <- CreateInputsCrit(FUN_CRIT = ErrorCrit_KGE, InputsModel = InputsModel,
RunOptions = RunOptions, obs = BasinObs$Qmm[Ind_Run],
RunOptions = RunOptions, Obs = BasinObs$Qmm[Ind_Run],
transfo = transfo)
OutputsCrit <- ErrorCrit_KGE(InputsCrit = InputsCrit, OutputsModel = OutputsModel)
## efficiency criterion: Kling-Gupta Efficiency above a threshold (quant. 75 \%)
BoolCrit <- BasinObs$Qmm[Ind_Run] >= quantile(BasinObs$Qmm[Ind_Run], 0.75, na.rm = TRUE)
InputsCrit <- CreateInputsCrit(FUN_CRIT = ErrorCrit_KGE, InputsModel = InputsModel,
RunOptions = RunOptions, obs = BasinObs$Qmm[Ind_Run],
RunOptions = RunOptions, Obs = BasinObs$Qmm[Ind_Run],
BoolCrit = BoolCrit)
OutputsCrit <- ErrorCrit_KGE(InputsCrit = InputsCrit, OutputsModel = OutputsModel)
}
......
......@@ -80,20 +80,20 @@ OutputsModel <- RunModel(InputsModel = InputsModel, RunOptions = RunOptions,
## efficiency criterion: Kling-Gupta Efficiency
InputsCrit <- CreateInputsCrit(FUN_CRIT = ErrorCrit_KGE2, InputsModel = InputsModel,
RunOptions = RunOptions, obs = BasinObs$Qmm[Ind_Run])
RunOptions = RunOptions, Obs = BasinObs$Qmm[Ind_Run])
OutputsCrit <- ErrorCrit_KGE2(InputsCrit = InputsCrit, OutputsModel = OutputsModel)
## efficiency criterion: Kling-Gupta Efficiency on square-root-transformed flows
transfo <- "sqrt"
InputsCrit <- CreateInputsCrit(FUN_CRIT = ErrorCrit_KGE2, InputsModel = InputsModel,
RunOptions = RunOptions, obs = BasinObs$Qmm[Ind_Run],
RunOptions = RunOptions, Obs = BasinObs$Qmm[Ind_Run],
transfo = transfo)
OutputsCrit <- ErrorCrit_KGE2(InputsCrit = InputsCrit, OutputsModel = OutputsModel)
## efficiency criterion: Kling-Gupta Efficiency above a threshold (quant. 75 \%)
BoolCrit <- BasinObs$Qmm[Ind_Run] >= quantile(BasinObs$Qmm[Ind_Run], 0.75, na.rm = TRUE)
InputsCrit <- CreateInputsCrit(FUN_CRIT = ErrorCrit_KGE2, InputsModel = InputsModel,
RunOptions = RunOptions, obs = BasinObs$Qmm[Ind_Run],
RunOptions = RunOptions, Obs = BasinObs$Qmm[Ind_Run],
BoolCrit = BoolCrit)
OutputsCrit <- ErrorCrit_KGE2(InputsCrit = InputsCrit, OutputsModel = OutputsModel)
}
......
......@@ -73,20 +73,20 @@ OutputsModel <- RunModel(InputsModel = InputsModel, RunOptions = RunOptions,
## efficiency criterion: Nash-Sutcliffe Efficiency
InputsCrit <- CreateInputsCrit(FUN_CRIT = ErrorCrit_NSE, InputsModel = InputsModel,
RunOptions = RunOptions, obs = BasinObs$Qmm[Ind_Run])
RunOptions = RunOptions, Obs = BasinObs$Qmm[Ind_Run])
OutputsCrit <- ErrorCrit_NSE(InputsCrit = InputsCrit, OutputsModel = OutputsModel)
## efficiency criterion: Nash-Sutcliffe Efficiency on log-transformed flows
transfo <- "log"
InputsCrit <- CreateInputsCrit(FUN_CRIT = ErrorCrit_NSE, InputsModel = InputsModel,
RunOptions = RunOptions, obs = BasinObs$Qmm[Ind_Run],
RunOptions = RunOptions, Obs = BasinObs$Qmm[Ind_Run],
transfo = transfo)
OutputsCrit <- ErrorCrit_NSE(InputsCrit = InputsCrit, OutputsModel = OutputsModel)
## efficiency criterion: Kling-Gupta Efficiency above a threshold (quant. 75 \%)
BoolCrit <- BasinObs$Qmm[Ind_Run] >= quantile(BasinObs$Qmm[Ind_Run], 0.75, na.rm = TRUE)
InputsCrit <- CreateInputsCrit(FUN_CRIT = ErrorCrit_NSE, InputsModel = InputsModel,
RunOptions = RunOptions, obs = BasinObs$Qmm[Ind_Run],
RunOptions = RunOptions, Obs = BasinObs$Qmm[Ind_Run],
BoolCrit = BoolCrit)
OutputsCrit <- ErrorCrit_NSE(InputsCrit = InputsCrit, OutputsModel = OutputsModel)
}
......
......@@ -71,20 +71,20 @@ OutputsModel <- RunModel(InputsModel = InputsModel, RunOptions = RunOptions,
## efficiency criterion: root-mean-square error
InputsCrit <- CreateInputsCrit(FUN_CRIT = ErrorCrit_RMSE, InputsModel = InputsModel,
RunOptions = RunOptions, obs = BasinObs$Qmm[Ind_Run])
RunOptions = RunOptions, Obs = BasinObs$Qmm[Ind_Run])
OutputsCrit <- ErrorCrit_RMSE(InputsCrit = InputsCrit, OutputsModel = OutputsModel)
## efficiency criterion: root-mean-square error on log-transformed flows
transfo <- "log"
InputsCrit <- CreateInputsCrit(FUN_CRIT = ErrorCrit_RMSE, InputsModel = InputsModel,
RunOptions = RunOptions, obs = BasinObs$Qmm[Ind_Run],
RunOptions = RunOptions, Obs = BasinObs$Qmm[Ind_Run],
transfo = transfo)
OutputsCrit <- ErrorCrit_RMSE(InputsCrit = InputsCrit, OutputsModel = OutputsModel)
## efficiency criterion: Kling-Gupta Efficiency above a threshold (quant. 75 \%)
BoolCrit <- BasinObs$Qmm[Ind_Run] >= quantile(BasinObs$Qmm[Ind_Run], 0.75, na.rm = TRUE)
InputsCrit <- CreateInputsCrit(FUN_CRIT = ErrorCrit_RMSE, InputsModel = InputsModel,
RunOptions = RunOptions, obs = BasinObs$Qmm[Ind_Run],
RunOptions = RunOptions, Obs = BasinObs$Qmm[Ind_Run],
BoolCrit = BoolCrit)
OutputsCrit <- ErrorCrit_RMSE(InputsCrit = InputsCrit, OutputsModel = OutputsModel)
}
......
......@@ -61,7 +61,7 @@ plot(OutputsModel, Qobs = BasinObs$Qmm[Ind_Run])
## efficiency criterion: Nash-Sutcliffe Efficiency
InputsCrit <- CreateInputsCrit(FUN_CRIT = ErrorCrit_NSE, InputsModel = InputsModel,
RunOptions = RunOptions, obs = BasinObs$Qmm[Ind_Run], varObs = "Q")
RunOptions = RunOptions, Obs = BasinObs$Qmm[Ind_Run], varObs = "Q")
OutputsCrit <- ErrorCrit_NSE(InputsCrit = InputsCrit, OutputsModel = OutputsModel)
}
......
......@@ -118,7 +118,7 @@ plot(OutputsModel, Qobs = BasinObs$Qmm[Ind_Run])
## efficiency criterion: Nash-Sutcliffe Efficiency
InputsCrit <- CreateInputsCrit(FUN_CRIT = ErrorCrit_NSE, InputsModel = InputsModel,
RunOptions = RunOptions, obs = BasinObs$Qmm[Ind_Run], varObs = "Q")
RunOptions = RunOptions, Obs = BasinObs$Qmm[Ind_Run], varObs = "Q")
OutputsCrit <- ErrorCrit_NSE(InputsCrit = InputsCrit, OutputsModel = OutputsModel)
......@@ -139,7 +139,7 @@ plot(OutputsModel, Qobs = BasinObs$Qmm[Ind_Run])
## efficiency criterion: Nash-Sutcliffe Efficiency
InputsCrit <- CreateInputsCrit(FUN_CRIT = ErrorCrit_NSE, InputsModel = InputsModel,
RunOptions = RunOptions, obs = BasinObs$Qmm[Ind_Run], varObs = "Q")
RunOptions = RunOptions, Obs = BasinObs$Qmm[Ind_Run], varObs = "Q")
OutputsCrit <- ErrorCrit_NSE(InputsCrit = InputsCrit, OutputsModel = OutputsModel)
}
......
......@@ -116,7 +116,7 @@ plot(OutputsModel, Qobs = BasinObs$Qmm[Ind_Run])
## efficiency criterion: Nash-Sutcliffe Efficiency
InputsCrit <- CreateInputsCrit(FUN_CRIT = ErrorCrit_NSE, InputsModel = InputsModel,
RunOptions = RunOptions, obs = BasinObs$Qmm[Ind_Run], varObs = "Q")
RunOptions = RunOptions, Obs = BasinObs$Qmm[Ind_Run], varObs = "Q")
OutputsCrit <- ErrorCrit_NSE(InputsCrit = InputsCrit, OutputsModel = OutputsModel)
......@@ -133,7 +133,7 @@ plot(OutputsModel, Qobs = BasinObs$Qmm[Ind_Run])
## efficiency criterion: Nash-Sutcliffe Efficiency
InputsCrit <- CreateInputsCrit(FUN_CRIT = ErrorCrit_NSE, InputsModel = InputsModel,
RunOptions = RunOptions, obs = BasinObs$Qmm[Ind_Run], varObs = "Q")
RunOptions = RunOptions, Obs = BasinObs$Qmm[Ind_Run], varObs = "Q")
OutputsCrit <- ErrorCrit_NSE(InputsCrit = InputsCrit, OutputsModel = OutputsModel)
}
......
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment