Commit 8557288e authored by Delaigue Olivier's avatar Delaigue Olivier
Browse files

Merge branch 'outputsGR1A' into 'dev'

Resolve "PotEvap and Precip are reversed in RunModel_GR1A outputs"

Closes #65

See merge request !16
Showing with 110 additions and 92 deletions
+110 -92
Package: airGR
Type: Package
Title: Suite of GR Hydrological Models for Precipitation-Runoff Modelling
Version: 1.6.3.23
Date: 2020-10-27
Version: 1.6.3.30
Date: 2020-11-06
Authors@R: c(
person("Laurent", "Coron", role = c("aut", "trl"), comment = c(ORCID = "0000-0002-1503-6204")),
person("Olivier", "Delaigue", role = c("aut", "cre"), comment = c(ORCID = "0000-0002-7668-8468"), email = "airGR@inrae.fr"),
......
......@@ -4,7 +4,7 @@
### 1.6.3.23 Release Notes (2020-10-27)
### 1.6.3.30 Release Notes (2020-11-06)
#### New features
......@@ -20,6 +20,11 @@
- The deprecated <code>RunSnowModule</code> argument has been removed from the <code>CreateRunOptions()</code> function. ([#23](https://gitlab.irstea.fr/HYCAR-Hydro/airgr/-/issues/23))
#### Bug fixes
- Fixed bug in <code>RunModel_GR1A()</code>. Reversed PotEvap and Precip outputs are now reordered (in the previous versions PotEvap contained the precipitation values and Precip contained the evapotranspiration values, the Qsim values were already correct).
#### Major user-visible changes
- Added output to <code>RunModel_GR2M()</code> function (Ps). ([#51](https://gitlab.irstea.fr/HYCAR-Hydro/airgr/-/issues/51))
......@@ -31,6 +36,7 @@
#### Minor user-visible changes
- <code>RunModel_GR1A()</code> now uses the Fortran version of the model code. This code is no longer duplicated: the R version which was used is removed.
- Character argument verification now use partial matching in <code>PE_Oudin()</code> and <code>SeriesAggreg()</code> functions. ([#37](https://gitlab.irstea.fr/HYCAR-Hydro/airgr/-/issues/37))
......
RunModel_GR1A <- function(InputsModel,RunOptions,Param){
NParam <- 1;
FortranOutputs <- .FortranOutputs(GR = "GR1A")$GR
##Arguments_check
if(inherits(InputsModel,"InputsModel")==FALSE){ stop("'InputsModel' must be of class 'InputsModel'") }
if(inherits(InputsModel,"yearly" )==FALSE){ stop("'InputsModel' must be of class 'yearly' ") }
if(inherits(InputsModel,"GR" )==FALSE){ stop("'InputsModel' must be of class 'GR' ") }
if(inherits(RunOptions,"RunOptions" )==FALSE){ stop("'RunOptions' must be of class 'RunOptions' ") }
if(inherits(RunOptions,"GR" )==FALSE){ stop("'RunOptions' must be of class 'GR' ") }
if(!is.vector(Param) | !is.numeric(Param)){ stop("'Param' must be a numeric vector") }
if(sum(!is.na(Param))!=NParam){ stop(paste("'Param' must be a vector of length ",NParam," and contain no NA",sep="")) }
Param <- as.double(Param);
##Input_data_preparation
if(identical(RunOptions$IndPeriod_WarmUp,as.integer(0))){ RunOptions$IndPeriod_WarmUp <- NULL; }
IndPeriod1 <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run);
LInputSeries <- as.integer(length(IndPeriod1))
if("all" %in% RunOptions$Outputs_Sim){ IndOutputs <- as.integer(1:length(FortranOutputs));
} else { IndOutputs <- which(FortranOutputs %in% RunOptions$Outputs_Sim); }
##Output_data_preparation
IndPeriod2 <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries;
ExportDatesR <- "DatesR" %in% RunOptions$Outputs_Sim;
ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim;
BOOL_Fortran <- FALSE; if(BOOL_Fortran){
##Call_fortan
RESULTS <- .Fortran("frun_gr1a",PACKAGE="airGR",
##inputs
LInputs=LInputSeries, ### length of input and output series
InputsPrecip=InputsModel$Precip[IndPeriod1], ### input series of total precipitation [mm/y]
InputsPE=InputsModel$PotEvap[IndPeriod1], ### input series potential evapotranspiration [mm/y]
NParam=as.integer(length(Param)), ### number of model parameter
Param=Param, ### parameter set
NStates=as.integer(length(RunOptions$IniStates)), ### number of state variables used for model initialising
StateStart=RunOptions$IniStates, ### state variables used when the model run starts
NOutputs=as.integer(length(IndOutputs)), ### number of output series
IndOutputs=IndOutputs, ### indices of output series
##outputs
Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputs)), ### output series [mm]
StateEnd=rep(as.double(-999.999),length(RunOptions$IniStates)) ### state variables at the end of the model run
)
RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA;
RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA;
} else {
##R_version
L <- length(IndPeriod1)
P0 <- InputsModel$Precip[ IndPeriod1][1:(L-1)]
P1 <- InputsModel$Precip[ IndPeriod1][2: L ]
E1 <- InputsModel$PotEvap[IndPeriod1][2: L ]
Q1 <- P1*(1.-1./(1.+((0.7*P1+0.3*P0)/Param[1]/E1)^2.0)^0.5)
PEQ <- rbind(c(NA,NA,NA),cbind(P1,E1,Q1))
Outputs <- PEQ[,IndOutputs]
if(is.vector(Outputs)){ Outputs <- cbind(Outputs); }
RESULTS <- list(NOutputs=length(IndOutputs),IndOutputs=IndOutputs,Outputs=Outputs,StatesEnd=NA)
}
##Output_data_preparation
##OutputsModel_only
if(ExportDatesR==FALSE & ExportStateEnd==FALSE){
OutputsModel <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]);
names(OutputsModel) <- FortranOutputs[IndOutputs]; }
##DatesR_and_OutputsModel_only
if(ExportDatesR==TRUE & ExportStateEnd==FALSE){
OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]) );
names(OutputsModel) <- c("DatesR",FortranOutputs[IndOutputs]); }
##OutputsModel_and_SateEnd_only
if(ExportDatesR==FALSE & ExportStateEnd==TRUE){
OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
list(RESULTS$StateEnd) );
names(OutputsModel) <- c(FortranOutputs[IndOutputs],"StateEnd"); }
##DatesR_and_OutputsModel_and_SateEnd
if((ExportDatesR==TRUE & ExportStateEnd==TRUE) | "all" %in% RunOptions$Outputs_Sim){
OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
list(RESULTS$StateEnd) );
names(OutputsModel) <- c("DatesR",FortranOutputs[IndOutputs],"StateEnd"); }
##End
rm(RESULTS);
class(OutputsModel) <- c("OutputsModel","yearly","GR");
return(OutputsModel);
RunModel_GR1A <- function(InputsModel, RunOptions, Param) {
NParam <- 1
FortranOutputs <- .FortranOutputs(GR = "GR1A")$GR
## Arguments_check
if (!inherits(InputsModel, "InputsModel")) {
stop("'InputsModel' must be of class 'InputsModel'")
}
if (!inherits(InputsModel, "yearly")) {
stop("'InputsModel' must be of class 'yearly'")
}
if (!inherits(InputsModel, "GR")) {
stop("'InputsModel' must be of class 'GR'")
}
if (!inherits(RunOptions, "RunOptions")) {
stop("'RunOptions' must be of class 'RunOptions'")
}
if (!inherits(RunOptions, "GR")) {
stop("'RunOptions' must be of class 'GR'")
}
if (!is.vector(Param) | !is.numeric(Param)) {
stop("'Param' must be a numeric vector")
}
if (sum(!is.na(Param)) != NParam) {
stop(paste("'Param' must be a vector of length", NParam, "and contain no NA"))
}
Param <- as.double(Param)
## Input data preparation
if (identical(RunOptions$IndPeriod_WarmUp, 0L)) {
RunOptions$IndPeriod_WarmUp <- NULL
}
IndPeriod1 <- c(RunOptions$IndPeriod_WarmUp, RunOptions$IndPeriod_Run)
LInputSeries <- as.integer(length(IndPeriod1))
if ("all" %in% RunOptions$Outputs_Sim) {
IndOutputs <- as.integer(1:length(FortranOutputs))
} else {
IndOutputs <- which(FortranOutputs %in% RunOptions$Outputs_Sim)
}
## Output data preparation
IndPeriod2 <- (length(RunOptions$IndPeriod_WarmUp) + 1):LInputSeries
ExportDatesR <- "DatesR" %in% RunOptions$Outputs_Sim
ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim
## Call_fortan
RESULTS <- .Fortran("frun_gr1a", PACKAGE = "airGR",
## inputs
LInputs = LInputSeries, ### length of input and output series
InputsPrecip = InputsModel$Precip[IndPeriod1], ### input series of total precipitation [mm/y]
InputsPE = InputsModel$PotEvap[IndPeriod1], ### input series potential evapotranspiration [mm/y]
NParam = as.integer(length(Param)), ### number of model parameter
Param = Param, ### parameter set
NStates = as.integer(length(RunOptions$IniStates)), ### number of state variables used for model initialising
StateStart = RunOptions$IniStates, ### state variables used when the model run starts
NOutputs = as.integer(length(IndOutputs)), ### number of output series
IndOutputs = IndOutputs, ### indices of output series
## outputs
Outputs = matrix(as.double(-999.999), nrow = LInputSeries,ncol=length(IndOutputs)), ### output series [mm]
StateEnd = rep(as.double(-999.999), length(RunOptions$IniStates)) ### state variables at the end of the model run
)
RESULTS$Outputs[ round(RESULTS$Outputs , 3) == (-999.999)] <- NA
RESULTS$StateEnd[round(RESULTS$StateEnd, 3) == (-999.999)] <- NA
## Output data preparation
## OutputsModel only
if (!ExportDatesR & !ExportStateEnd) {
OutputsModel <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i])
names(OutputsModel) <- FortranOutputs[IndOutputs]
}
## DatesR and OutputsModel only
if (ExportDatesR & !ExportStateEnd) {
OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]))
names(OutputsModel) <- c("DatesR", FortranOutputs[IndOutputs])
}
## OutputsModel and SateEnd only
if (!ExportDatesR & ExportStateEnd) {
OutputsModel <- c(lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]),
list(RESULTS$StateEnd))
names(OutputsModel) <- c(FortranOutputs[IndOutputs], "StateEnd")
}
## DatesR and OutputsModel and SateEnd
if ((ExportDatesR & ExportStateEnd) | "all" %in% RunOptions$Outputs_Sim) {
OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]),
list(RESULTS$StateEnd))
names(OutputsModel) <- c("DatesR", FortranOutputs[IndOutputs], "StateEnd")
}
## End
class(OutputsModel) <- c("OutputsModel", "yearly", "GR")
return(OutputsModel)
}
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment