-
Le Roux Erwan authored883067a1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
import datetime
from matplotlib.patches import Polygon
import io
import os
import os.path as op
from collections import OrderedDict
from contextlib import redirect_stdout
from itertools import chain
from multiprocessing.pool import Pool
from typing import List, Dict, Tuple, Union
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from PIL import Image
from PIL import ImageDraw
from matplotlib.colors import Normalize
from netCDF4 import Dataset
from experiment.meteo_france_data.scm_models_data.abstract_variable import AbstractVariable
from experiment.meteo_france_data.scm_models_data.scm_constants import ALTITUDES, ZS_INT_23, ZS_INT_MASK, LONGITUDES, \
LATITUDES, ORIENTATIONS, SLOPES, ORDERED_ALLSLOPES_ALTITUDES, ORDERED_ALLSLOPES_ORIENTATIONS, \
ORDERED_ALLSLOPES_SLOPES, ORDERED_ALLSLOPES_MASSIFNUM
from experiment.meteo_france_data.scm_models_data.visualization.utils import get_km_formatter
from extreme_fit.model.margin_model.margin_function.abstract_margin_function import \
AbstractMarginFunction
from experiment.meteo_france_data.plot.create_shifted_cmap import create_colorbase_axis, \
get_shifted_map, get_colors
from spatio_temporal_dataset.coordinates.abstract_coordinates import AbstractCoordinates
from spatio_temporal_dataset.coordinates.spatial_coordinates.abstract_spatial_coordinates import \
AbstractSpatialCoordinates
from spatio_temporal_dataset.spatio_temporal_observations.annual_maxima_observations import AnnualMaxima
from root_utils import get_full_path, cached_property, NB_CORES, classproperty
f = io.StringIO()
with redirect_stdout(f):
from simpledbf import Dbf5
class AbstractStudy(object):
"""
A Study is defined by:
- a variable class that correspond to the meteorogical quantity of interest
- an altitude of interest
- a start and a end year
Les fichiers netcdf de SAFRAN et CROCUS sont autodocumentés (on peut les comprendre avec ncdump -h notamment).
The year 2017 represents the nc file that correspond to the winter between the year 2017 and 2018.
"""
REANALYSIS_FLAT_FOLDER = 'SAFRAN_montagne-CROCUS_2019/alp_flat/reanalysis'
REANALYSIS_ALLSLOPES_FOLDER = 'SAFRAN_montagne-CROCUS_2019/alp_allslopes/reanalysis'
# REANALYSIS_FOLDER = 'SAFRAN_montagne-CROCUS_2019/postes/reanalysis'
def __init__(self, variable_class: type, altitude: int = 1800, year_min=1000, year_max=3000,
multiprocessing=True, orientation=None, slope=20.0):
assert isinstance(altitude, int), type(altitude)
assert altitude in ALTITUDES, altitude
self.altitude = altitude
self.model_name = None
self.variable_class = variable_class
self.year_min = year_min
self.year_max = year_max
self.multiprocessing = multiprocessing
# Add some attributes, for the "allslopes" reanalysis
assert orientation is None or orientation in ORIENTATIONS
assert slope in SLOPES
self.orientation = orientation
self.slope = slope
""" Time """
@cached_property
def year_to_days(self) -> OrderedDict:
# Map each year to the 'days since year-08-01 06:00:00'
year_to_days = OrderedDict()
for year in self.ordered_years:
date = datetime.datetime(year=year, month=8, day=1, hour=6, minute=0, second=0)
days = []
for i in range(366):
days.append(str(date).split()[0])
date += datetime.timedelta(days=1)
if date.month == 8 and date.day == 1:
break
year_to_days[year] = days
return year_to_days
@property
def all_days(self):
return list(chain(*list(self.year_to_days.values())))
@property
def all_daily_series(self):
all_daily_series = np.concatenate(list(self.year_to_daily_time_serie_array.values()))
assert len(all_daily_series) == len(self.all_days)
return all_daily_series
""" Annual maxima """
@property
def observations_annual_maxima(self) -> AnnualMaxima:
return AnnualMaxima(df_maxima_gev=pd.DataFrame(self.year_to_annual_maxima, index=self.study_massif_names))
def annual_maxima_and_years(self, massif_name) -> Tuple[np.ndarray, np.ndarray]:
df = self.observations_annual_maxima.df_maxima_gev
return df.loc[massif_name].values, np.array(df.columns)
@cached_property
def year_to_annual_maxima(self) -> OrderedDict:
# Map each year to an array of size nb_massif
year_to_annual_maxima = OrderedDict()
for year, time_serie in self._year_to_max_daily_time_serie.items():
year_to_annual_maxima[year] = time_serie.max(axis=0)
return year_to_annual_maxima
@cached_property
def year_to_annual_maxima_index(self) -> OrderedDict:
# Map each year to an array of size nb_massif
year_to_annual_maxima = OrderedDict()
for year, time_serie in self._year_to_max_daily_time_serie.items():
year_to_annual_maxima[year] = time_serie.argmax(axis=0)
return year_to_annual_maxima
""" Annual total """
@property
def df_annual_total(self) -> pd.DataFrame:
return pd.DataFrame(self.year_to_annual_total, index=self.study_massif_names).transpose()
def annual_aggregation_function(self, *args, **kwargs):
raise NotImplementedError()
@cached_property
def year_to_annual_total(self) -> OrderedDict:
# Map each year to an array of size nb_massif
year_to_annual_mean = OrderedDict()
for year, time_serie in self._year_to_daily_time_serie_array.items():
year_to_annual_mean[year] = self.apply_annual_aggregation(time_serie)
return year_to_annual_mean
def apply_annual_aggregation(self, time_serie):
return self.annual_aggregation_function(time_serie, axis=0)
""" Load daily observations """
@cached_property
def year_to_daily_time_serie_array(self) -> OrderedDict:
return self._year_to_daily_time_serie_array
@property
def _year_to_max_daily_time_serie(self) -> OrderedDict:
return self._year_to_daily_time_serie_array
@property
def _year_to_daily_time_serie_array(self) -> OrderedDict:
# Map each year to a matrix of size 365-nb_days_consecutive+1 x nb_massifs
year_to_daily_time_serie_array = OrderedDict()
for year in self.ordered_years:
# Check daily data
daily_time_serie = self.year_to_variable_object[year].daily_time_serie_array
assert daily_time_serie.shape[0] in [365, 366]
assert daily_time_serie.shape[1] == len(self.column_mask)
# Filter only the data corresponding to the altitude of interest
daily_time_serie = daily_time_serie[:, self.column_mask]
year_to_daily_time_serie_array[year] = daily_time_serie
return year_to_daily_time_serie_array
""" Load Variables and Datasets """
@cached_property
def year_to_variable_object(self) -> OrderedDict:
# Map each year to the variable array
path_files, ordered_years = self.ordered_years_and_path_files
if self.multiprocessing:
with Pool(NB_CORES) as p:
variables = p.map(self.load_variable_object, path_files)
else:
variables = [self.load_variable_object(path_file) for path_file in path_files]
return OrderedDict(zip(ordered_years, variables))
def instantiate_variable_object(self, variable_array) -> AbstractVariable:
return self.variable_class(variable_array)
def load_variable_array(self, dataset):
return np.array(dataset.variables[self.load_keyword()])
def load_variable_object(self, path_file):
dataset = Dataset(path_file)
variable_array = self.load_variable_array(dataset)
return self.instantiate_variable_object(variable_array)
def load_keyword(self):
return self.variable_class.keyword()
@property
def year_to_dataset_ordered_dict(self) -> OrderedDict:
print('This code is quite long... '
'You should consider year_to_variable which is way faster when multiprocessing=True')
# Map each year to the correspond netCDF4 Dataset
path_files, ordered_years = self.ordered_years_and_path_files
datasets = [Dataset(path_file) for path_file in path_files]
return OrderedDict(zip(ordered_years, datasets))
@cached_property
def ordered_years_and_path_files(self):
nc_files = [(int(f.split('_')[-2][:4]), f) for f in os.listdir(self.study_full_path) if f.endswith('.nc')]
ordered_years, path_files = zip(*[(year, op.join(self.study_full_path, nc_file))
for year, nc_file in sorted(nc_files, key=lambda t: t[0])
if self.year_min <= year < self.year_max])
return path_files, ordered_years
""" Temporal properties """
@property
def ordered_years(self):
return self.ordered_years_and_path_files[1]
@property
def start_year_and_stop_year(self) -> Tuple[int, int]:
ordered_years = self.ordered_years
return ordered_years[0], ordered_years[-1]
""" Spatial properties """
@property
def study_massif_names(self) -> List[str]:
# Massif names that are present in the current study (i.e. for the current altitude)
return self.altitude_to_massif_names[self.altitude]
@property
def df_massifs_longitude_and_latitude(self) -> pd.DataFrame:
# DataFrame object that represents the massif coordinates in degrees extracted from the SCM data
# Another way of getting the latitudes and longitudes could have been the following:
# any_ordered_dict = list(self.year_to_dataset_ordered_dict.values())[0]
# longitude = np.array(any_ordered_dict.variables['longitude'])
# latitude = np.array(any_ordered_dict.variables['latitude'])
longitude = np.array(LONGITUDES)
latitude = np.array(LATITUDES)
columns = [AbstractSpatialCoordinates.COORDINATE_X, AbstractSpatialCoordinates.COORDINATE_Y]
data = dict(zip(columns, [longitude[self.flat_mask], latitude[self.flat_mask]]))
return pd.DataFrame(data=data, index=self.study_massif_names, columns=columns)
@property
def missing_massif_name(self):
return set(self.all_massif_names) - set(self.altitude_to_massif_names[self.altitude])
@property
def column_mask(self):
return self.allslopes_mask if self.has_orientation else self.flat_mask
@property
def allslopes_mask(self):
altitude_mask = np.array(ORDERED_ALLSLOPES_ALTITUDES) == self.altitude
orientation_mask = np.array(ORDERED_ALLSLOPES_ORIENTATIONS) == self.orientation
slope_mask = np.array(ORDERED_ALLSLOPES_SLOPES) == self.slope
allslopes_mask = altitude_mask & orientation_mask & slope_mask
# Exclude all the data corresponding to the 24th massif
massif_24_mask = np.array(ORDERED_ALLSLOPES_MASSIFNUM) == 30
return allslopes_mask & ~massif_24_mask
@cached_property
def flat_mask(self):
altitude_mask = ZS_INT_MASK == self.altitude
assert np.sum(altitude_mask) == len(self.altitude_to_massif_names[self.altitude])
return altitude_mask
""" Path properties """
@property
def title(self):
return "{}/at altitude {}m ({} mountain chains)".format(self.variable_name, self.altitude,
len(self.study_massif_names))
@property
def variable_name(self):
return self.variable_class.NAME + ' ({})'.format(self.variable_unit)
@property
def variable_unit(self):
return self.variable_class.UNIT
""" Visualization methods """
@classmethod
def massifs_coordinates_for_display(cls, massif_names) -> AbstractSpatialCoordinates:
# Coordinate object that represents the massif coordinates in Lambert extended
# extracted for a csv file, and used only for display purposes
df = cls.load_df_centroid()
# Filter, keep massifs present at the altitude of interest
df = df.loc[massif_names, :]
# Build coordinate object from df_centroid
return AbstractSpatialCoordinates.from_df(df)
@classmethod
def visualize_study(cls, ax=None, massif_name_to_value: Union[None, Dict[str, float]] = None, show=True, fill=True,
replace_blue_by_white=True,
label=None, add_text=False, cmap=None, add_colorbar=False, vmax=100, vmin=0,
default_color_for_missing_massif='gainsboro',
default_color_for_nan_values='w',
massif_name_to_color=None,
show_label=True,
scaled=True,
fontsize=7,
axis_off=False,
massif_name_to_hatch_boolean_list=None,
norm=None,
massif_name_to_marker_style=None,
ticks_values_and_labels=None,
):
if ax is None:
ax = plt.gca()
if massif_name_to_value is not None:
massif_names, values = list(zip(*massif_name_to_value.items()))
else:
massif_names, values = None, None
if massif_name_to_color is None:
# Load the colors
if cmap is None:
cmap = get_shifted_map(vmin, vmax)
norm = Normalize(vmin, vmax)
colors = get_colors(values, cmap, vmin, vmax, replace_blue_by_white)
massif_name_to_color = dict(zip(massif_names, colors))
massif_name_to_fill_kwargs = {massif_name: {'color': color} for massif_name, color in
massif_name_to_color.items()}
massif_names = list(massif_name_to_fill_kwargs.keys())
masssif_coordinate_for_display = cls.massifs_coordinates_for_display(massif_names)
for coordinate_id, coords_list in cls.idx_to_coords_list.items():
# Retrieve the list of coords (x,y) that define the contour of the massif of id coordinate_id
# if j == 0:
# mask_outside_polygon(poly_verts=l, ax=ax)
# Plot the contour of the massif
coords_list = list(zip(*coords_list))
ax.plot(*coords_list, color='black')
# Potentially, fill the inside of the polygon with some color
if fill and coordinate_id in cls.coordinate_id_to_massif_name:
massif_name = cls.coordinate_id_to_massif_name[coordinate_id]
if massif_name in massif_name_to_marker_style:
massif_coordinate = masssif_coordinate_for_display.df_all_coordinates.loc[massif_name, :].values
if massif_name in ['Maurienne', 'Mercantour']:
massif_coordinate[1] -= 5000
ax.plot(massif_coordinate[0],
massif_coordinate[1], **massif_name_to_marker_style[massif_name])
if massif_name_to_fill_kwargs is not None and massif_name in massif_name_to_fill_kwargs:
fill_kwargs = massif_name_to_fill_kwargs[massif_name]
ax.fill(*coords_list, **fill_kwargs)
else:
ax.fill(*coords_list, **{'color': default_color_for_missing_massif})
# For the moment we comment all the part of this code
# # Add a hatch to visualize the mean & variance variation sign
# hatch_list = ['//', '\\\\']
# if massif_name_to_hatch_boolean_list is not None:
# if massif_name in massif_name_to_hatch_boolean_list:
# a = np.array(coords_list).transpose()
# hatch_boolean_list = massif_name_to_hatch_boolean_list[massif_name]
# for hatch, is_hatch in zip(hatch_list, hatch_boolean_list):
# if is_hatch:
# ax.add_patch(Polygon(xy=a, fill=False, hatch=hatch))
if show_label:
# Improve some explanation on the X axis and on the Y axis
ax.set_xlabel('Longitude (km)')
ax.xaxis.set_major_formatter(get_km_formatter())
ax.set_ylabel('Latitude (km)')
ax.yaxis.set_major_formatter(get_km_formatter())
else:
# Remove the ticks
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
# Display the name or value of the massif
if add_text:
for _, row in masssif_coordinate_for_display.df_all_coordinates.iterrows():
x, y = list(row)
massif_name = row.name
value = massif_name_to_value[massif_name]
str_value = str(value)
ax.text(x, y, str_value, horizontalalignment='center', verticalalignment='center', fontsize=fontsize)
if scaled:
plt.axis('scaled')
# create the colorbar only at the end
if add_colorbar:
if len(set(values)) > 1:
create_colorbase_axis(ax, label, cmap, norm, ticks_values_and_labels=ticks_values_and_labels)
if axis_off:
plt.axis('off')
if show:
plt.show()
return ax
"""
CLASS ATTRIBUTES COMMON TO ALL OBJECTS
(written as object attributes/methods for simplicity)
"""
""" Path properties """
@classproperty
def relative_path(self) -> str:
return r'local/spatio_temporal_datasets'
@classproperty
def full_path(self) -> str:
return get_full_path(relative_path=self.relative_path)
@classproperty
def map_full_path(self) -> str:
return op.join(self.full_path, 'map')
@classproperty
def result_full_path(cls) -> str:
return op.join(cls.full_path, 'results')
@property
def study_full_path(self) -> str:
assert self.model_name in ['Safran', 'Crocus']
study_folder = 'meteo' if self.model_name is 'Safran' else 'pro'
return op.join(self.reanalysis_path, study_folder)
@property
def reanalysis_path(self):
reanalysis_folder = self.REANALYSIS_ALLSLOPES_FOLDER if self.has_orientation else self.REANALYSIS_FLAT_FOLDER
return op.join(self.full_path, reanalysis_folder)
@property
def has_orientation(self):
return self.orientation is not None
""" Spatial properties """
@classproperty
def original_safran_massif_id_to_massif_name(cls) -> Dict[int, str]:
return {massif_id: massif_name for massif_id, massif_name in enumerate(cls.all_massif_names)}
@classproperty
def all_massif_names(cls) -> List[str]:
"""
Pour l'identification des massifs, le numéro de la variable massif_num correspond à celui de l'attribut num_opp
"""
metadata_path = op.join(cls.full_path, cls.REANALYSIS_FLAT_FOLDER, 'metadata')
dbf = Dbf5(op.join(metadata_path, 'massifs_alpes.dbf'))
df = dbf.to_dataframe().copy() # type: pd.DataFrame
dbf.f.close()
df.sort_values(by='num_opp', inplace=True)
all_massif_names = list(df['nom'])
# Correct a massif name
all_massif_names[all_massif_names.index('Beaufortin')] = 'Beaufortain'
return all_massif_names
@classmethod
def load_df_centroid(cls) -> pd.DataFrame:
# Load df_centroid containing all the massif names
df_centroid = pd.read_csv(op.join(cls.map_full_path, 'coordonnees_massifs_alpes.csv'))
df_centroid.set_index('NOM', inplace=True)
# Check that the names of massifs are the same
symmetric_difference = set(df_centroid.index).symmetric_difference(cls.all_massif_names)
assert len(symmetric_difference) == 0, symmetric_difference
# Sort the column in the order of the SAFRAN dataset
df_centroid = df_centroid.reindex(cls.all_massif_names, axis=0)
for coord_column in [AbstractCoordinates.COORDINATE_X, AbstractCoordinates.COORDINATE_Y]:
df_centroid.loc[:, coord_column] = df_centroid[coord_column].str.replace(',', '.').astype(float)
return df_centroid
@cached_property
def massif_name_to_altitudes(self) -> Dict[str, List[int]]:
s = ZS_INT_23 + [0]
zs_list = []
zs_all_list = []
for a, b in zip(s[:-1], s[1:]):
zs_list.append(a)
if a > b:
zs_all_list.append(zs_list)
zs_list = []
return OrderedDict(zip(self.all_massif_names, zs_all_list))
@cached_property
def altitude_to_massif_names(self) -> Dict[int, List[str]]:
altitude_to_massif_names = {altitude: [] for altitude in ALTITUDES}
for massif_name in self.massif_name_to_altitudes.keys():
for altitude in self.massif_name_to_altitudes[massif_name]:
altitude_to_massif_names[altitude].append(massif_name)
# massif_names are ordered in the same way as all_massif_names
return altitude_to_massif_names
""" Visualization methods """
@classproperty
def coordinate_id_to_massif_name(cls) -> Dict[int, str]:
df_centroid = cls.load_df_centroid()
return dict(zip(df_centroid['id'], df_centroid.index))
@classproperty
def idx_to_coords_list(self):
df_massif = pd.read_csv(op.join(self.map_full_path, 'massifsalpes.csv'))
coord_tuples = [(row_massif['idx'], row_massif[AbstractCoordinates.COORDINATE_X],
row_massif[AbstractCoordinates.COORDINATE_Y])
for _, row_massif in df_massif.iterrows()]
all_idxs = set([t[0] for t in coord_tuples])
return {idx: [coords for idx_loop, *coords in coord_tuples if idx == idx_loop] for idx in all_idxs}
@property
def all_coords_list(self):
all_values = []
for e in self.idx_to_coords_list.values():
all_values.extend(e)
return list(zip(*all_values))
@property
def visualization_x_limits(self):
return min(self.all_coords_list[0]), max(self.all_coords_list[0])
@property
def visualization_y_limits(self):
return min(self.all_coords_list[1]), max(self.all_coords_list[1])
@cached_property
def mask_french_alps(self):
resolution = AbstractMarginFunction.VISUALIZATION_RESOLUTION
mask_french_alps = np.zeros([resolution, resolution])
for polygon in self.idx_to_coords_list.values():
xy_values = list(zip(*polygon))
normalized_polygon = []
for values, (minlim, max_lim) in zip(xy_values, [self.visualization_x_limits, self.visualization_y_limits]):
values -= minlim
values *= resolution / (max_lim - minlim)
normalized_polygon.append(values)
normalized_polygon = list(zip(*normalized_polygon))
img = Image.new('L', (resolution, resolution), 0)
ImageDraw.Draw(img).polygon(normalized_polygon, outline=1, fill=1)
mask_massif = np.array(img)
mask_french_alps += mask_massif
return ~np.array(mask_french_alps, dtype=bool)