An error occurred while loading the file. Please try again.
-
Le Roux Erwan authorede799fa49
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
# -*- coding: utf-8 -*-
"""
created on January 6, 2020.
Updates May 2022, Oct 2022.
Ohmpi.py is a program to control a low-cost and open hardware resistivity meter OhmPi that has been developed by
Rémi CLEMENT (INRAE),Vivien DUBOIS (INRAE), Hélène GUYARD (IGE), Nicolas FORQUET (INRAE), Yannick FARGIER (IFSTTAR)
Olivier KAUFMANN (UMONS), Arnaud WATELET (UMONS) and Guillaume BLANCHY (ILVO).
"""
import os
import io
import json
import numpy as np
import csv
import time
from io import StringIO
from datetime import datetime
from termcolor import colored
import threading
import paho.mqtt.client as mqtt_client
from logging_setup import setup_loggers
from config import MQTT_CONTROL_CONFIG, OHMPI_CONFIG
# finish import (done only when class is instantiated as some libs are only available on arm64 platform)
try:
import board # noqa
import busio # noqa
import adafruit_tca9548a # noqa
import adafruit_ads1x15.ads1115 as ads # noqa
from adafruit_ads1x15.analog_in import AnalogIn # noqa
from adafruit_mcp230xx.mcp23008 import MCP23008 # noqa
from adafruit_mcp230xx.mcp23017 import MCP23017 # noqa
import digitalio # noqa
from digitalio import Direction # noqa
from gpiozero import CPUTemperature # noqa
arm64_imports = True
except ImportError as error:
print(colored(f'Import error: {error}', 'yellow'))
arm64_imports = False
except Exception as error:
print(colored(f'Unexpected error: {error}', 'red'))
exit()
class OhmPi(object):
"""Create the main OhmPi object.
Parameters
----------
settings : str, optional
Path to the .json configuration file.
sequence : str, optional
Path to the .txt where the sequence is read. By default, a 1 quadrupole
sequence: 1, 2, 3, 4 is used.
"""
def __init__(self, settings=None, sequence=None, use_mux=False, mqtt=True, on_pi=None):
# flags and attributes
if on_pi is None:
_, on_pi = OhmPi.get_platform()
self._sequence = sequence
self.use_mux = use_mux
self.on_pi = on_pi # True if run from the RaspberryPi with the hardware, otherwise False for random data
self.status = 'idle' # either running or idle
self.thread = None # contains the handle for the thread taking the measurement
# set loggers
config_exec_logger, _, config_data_logger, _, _ = setup_loggers(mqtt=mqtt) # TODO: add SOH
self.data_logger = config_data_logger
self.exec_logger = config_exec_logger
self.soh_logger = None
print('Loggers:')
print(colored(f'Exec logger {self.exec_logger.handlers if self.exec_logger is not None else "None"}', 'blue'))
print(colored(f'Data logger {self.data_logger.handlers if self.data_logger is not None else "None"}', 'blue'))
print(colored(f'SOH logger {self.soh_logger.handlers if self.soh_logger is not None else "None"}', 'blue'))
# set controller
self.controller = mqtt_client.Client(f"ohmpi_{OHMPI_CONFIG['id']}_listener", clean_session=False) # create new instance
print(colored(f"Connecting to control topic {MQTT_CONTROL_CONFIG['ctrl_topic']} on {MQTT_CONTROL_CONFIG['hostname']} broker", 'blue'))
trials = 0
trials_max = 10
broker_connected = False
while trials < trials_max:
try:
self.controller.username_pw_set(MQTT_CONTROL_CONFIG['auth'].get('username'),
MQTT_CONTROL_CONFIG['auth']['password'])
self.controller.connect(MQTT_CONTROL_CONFIG['hostname'])
trials = trials_max
broker_connected = True
except Exception as e:
self.exec_logger.debug(f'Unable to connect control broker: {e}')
self.exec_logger.info('trying again to connect to control broker...')
time.sleep(2)
trials += 1
if broker_connected:
self.exec_logger.info(f"Subscribing to control topic {MQTT_CONTROL_CONFIG['ctrl_topic']}")
self.controller.subscribe(MQTT_CONTROL_CONFIG['ctrl_topic'], MQTT_CONTROL_CONFIG['qos'])
else:
self.exec_logger.error(f"Unable to connect to control broker on {MQTT_CONTROL_CONFIG['hostname']}")
self.controller = None
# read in hardware parameters (config.py)
self._read_hardware_config()
# default acquisition settings
self.settings = {
'injection_duration': 0.2,
'nbr_meas': 1,
'sequence_delay': 1,
'nb_stack': 1,
'export_path': 'data/measurement.csv'
}
print(self.settings)
# read in acquisition settings
if settings is not None:
self._update_acquisition_settings(settings)
print(self.settings)
self.exec_logger.debug('Initialized with settings:' + str(self.settings))
# read quadrupole sequence
if sequence is not None:
self.load_sequence(sequence)
# connect to components on the OhmPi board
if self.on_pi:
# activation of I2C protocol
self.i2c = busio.I2C(board.SCL, board.SDA) # noqa
# I2C connexion to MCP23008, for current injection
self.mcp = MCP23008(self.i2c, address=0x20)
# ADS1115 for current measurement (AB)
self.ads_current = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=0x48)
# ADS1115 for voltage measurement (MN)
self.ads_voltage = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=0x49)
# Starts the command processing thread
self.cmd_listen = True
self.cmd_thread = threading.Thread(target=self._control)
self.cmd_thread.start()
@property
def sequence(self):
"""Gets or sets sequence"""
if self._sequence is not None:
assert isinstance(self._sequence, np.ndarray)
return self._sequence
@sequence.setter
def sequence(self, sequence):
if sequence is not None:
assert isinstance(sequence, np.ndarray)
self.use_mux = True
else:
self.use_mux = False
self._sequence = sequence
def _control(self):
def on_message(client, userdata, message):
command = message.payload.decode('utf-8')
self.exec_logger.debug(f'Received command {command}')
self.process_commands(command)
self.controller.on_message = on_message
self.controller.loop_start()
while True:
time.sleep(.5)
def _update_acquisition_settings(self, config):
"""Update acquisition settings from a json file or dictionary.
Parameters can be:
- nb_electrodes (number of electrode used, if 4, no MUX needed)
- injection_duration (in seconds)
- nbr_meas (total number of times the sequence will be run)
- sequence_delay (delay in second between each sequence run)
- nb_stack (number of stack for each quadrupole measurement)
- export_path (path where to export the data, timestamp will be added to filename)
Parameters
----------
config : str
Path to the .json or dictionary.
"""
if isinstance(config, dict):
self.settings.update(config)
else:
with open(config) as json_file:
dic = json.load(json_file)
self.settings.update(dic)
self.exec_logger.debug('Acquisition parameters updated: ' + str(self.settings))
def _read_hardware_config(self):
"""Read hardware configuration from config.py
"""
from config import OHMPI_CONFIG
self.id = OHMPI_CONFIG['id'] # ID of the OhmPi
self.r_shunt = OHMPI_CONFIG['R_shunt'] # reference resistance value in ohm
self.Imax = OHMPI_CONFIG['Imax'] # maximum current
self.exec_logger.warning(f'The maximum current cannot be higher than {self.Imax} mA')
self.coef_p2 = OHMPI_CONFIG['coef_p2'] # slope for current conversion for ads.P2, measurement in V/V
self.coef_p3 = OHMPI_CONFIG['coef_p3'] # slope for current conversion for ads.P3, measurement in V/V
# self.offset_p2 = OHMPI_CONFIG['offset_p2'] parameter removed
# self.offset_p3 = OHMPI_CONFIG['offset_p3'] parameter removed
self.nb_samples = OHMPI_CONFIG['integer'] # number of samples measured for each stack
self.version = OHMPI_CONFIG['version'] # hardware version
self.max_elec = OHMPI_CONFIG['max_elec'] # maximum number of electrodes
self.board_addresses = OHMPI_CONFIG['board_addresses']
self.exec_logger.debug(f'OHMPI_CONFIG = {str(OHMPI_CONFIG)}')
@staticmethod
def find_identical_in_line(quads):
"""Find quadrupole where A and B are identical.
If A and B are connected to the same relay, the Pi burns (short-circuit).
Parameters
----------
quads : numpy.ndarray
List of quadrupoles of shape nquad x 4 or 1D vector of shape nquad.
Returns
-------
output : numpy.ndarray 1D array of int
List of index of rows where A and B are identical.
"""
# TODO is this needed for M and N?
# if we have a 1D array (so only 1 quadrupole), make it 2D
if len(quads.shape) == 1:
quads = quads[None, :]
output = np.where(quads[:, 0] == quads[:, 1])[0]
# output = []
# if array_object.ndim == 1:
# temp = np.zeros(4)
# for i in range(len(array_object)):
# temp[i] = np.count_nonzero(array_object == array_object[i])
# if any(temp > 1):
# output.append(0)
# else:
# for i in range(len(array_object[:,1])):
# temp = np.zeros(len(array_object[1,:]))
# for j in range(len(array_object[1,:])):
# temp[j] = np.count_nonzero(array_object[i,:] == array_object[i,j])
# if any(temp > 1):
# output.append(i)
return output
@staticmethod
def get_platform():
"""Get platform name and check if it is a raspberry pi
Returns
=======
str, bool
name of the platform on which the code is running, boolean that is true if the platform is a raspberry pi"""
platform = 'unknown'
on_pi = False
try:
with io.open('/sys/firmware/devicetree/base/model', 'r') as f:
platform = f.read().lower()
if 'raspberry pi' in platform:
on_pi = True
except FileNotFoundError:
pass
return platform, on_pi
def load_sequence(self, filename):
"""Read quadrupole sequence from file.
Parameters
----------
filename : str
Path of the .csv or .txt file with A, B, M and N electrodes.
Electrode index start at 1.
Returns
-------
sequence : numpy.array
Array of shape (number quadrupoles * 4).
"""
sequence = np.loadtxt(filename, delimiter=" ", dtype=np.uint32) # load quadrupole file
if sequence is not None:
self.exec_logger.debug('Sequence of {:d} quadrupoles read.'.format(sequence.shape[0]))
# locate lines where the electrode index exceeds the maximum number of electrodes
test_index_elec = np.array(np.where(sequence > self.max_elec))
# locate lines where electrode A == electrode B
test_same_elec = self.find_identical_in_line(sequence)
# if statement with exit cases (TODO rajouter un else if pour le deuxième cas du ticket #2)
if test_index_elec.size != 0:
for i in range(len(test_index_elec[0, :])):
self.exec_logger.error(f'An electrode index at line {str(test_index_elec[0, i] + 1)} '
f'exceeds the maximum number of electrodes')
# sys.exit(1)
sequence = None
elif len(test_same_elec) != 0:
for i in range(len(test_same_elec)):
self.exec_logger.error(f'An electrode index A == B detected at line {str(test_same_elec[i] + 1)}')
# sys.exit(1)
sequence = None
if sequence is not None:
self.exec_logger.info('Sequence of {:d} quadrupoles read.'.format(sequence.shape[0]))
else:
self.exec_logger.warning(f'Unable to load sequence {filename}')
self.sequence = sequence
def switch_mux(self, electrode_nr, state, role):
"""Select the right channel for the multiplexer cascade for a given electrode.
Parameters
----------
electrode_nr : int
Electrode index to be switched on or off.
state : str
Either 'on' or 'off'.
role : str
Either 'A', 'B', 'M' or 'N', so we can assign it to a MUX board.
"""
if not self.use_mux:
pass # no MUX or don't use MUX
elif self.sequence is None:
self.exec_logger.warning('Unable to switch MUX without a sequence')
else:
# choose with MUX board
tca = adafruit_tca9548a.TCA9548A(self.i2c, self.board_addresses[role])
# find I2C address of the electrode and corresponding relay
# TODO from number of electrode, the below can be guessed
# considering that one MCP23017 can cover 16 electrodes
i2c_address = 7 - (electrode_nr - 1) // 16 # quotient without rest of the division
relay_nr = electrode_nr - (electrode_nr // 16) * 16 +1
if i2c_address is not None:
# select the MCP23017 of the selected MUX board
mcp2 = MCP23017(tca[i2c_address])
mcp2.get_pin(relay_nr - 1).direction = digitalio.Direction.OUTPUT
if state == 'on':
mcp2.get_pin(relay_nr - 1).value = True
else:
mcp2.get_pin(relay_nr - 1).value = False
self.exec_logger.debug(f'Switching relay {relay_nr} {state} for electrode {electrode_nr}')
else:
self.exec_logger.warning(f'Unable to address electrode nr {electrode_nr}')
def switch_mux_on(self, quadrupole):
""" Switch on multiplexer relays for given quadrupole.
Parameters
----------
quadrupole : list of 4 int
List of 4 integers representing the electrode numbers.
"""
roles = ['A', 'B', 'M', 'N']
# another check to be sure A != B
if quadrupole[0] != quadrupole[1]:
for i in range(0, 4):
self.switch_mux(quadrupole[i], 'on', roles[i])
else:
self.exec_logger.error('A == B -> short circuit risk detected!')
def switch_mux_off(self, quadrupole):
""" Switch off multiplexer relays for given quadrupole.
Parameters
----------
quadrupole : list of 4 int
List of 4 integers representing the electrode numbers.
"""
roles = ['A', 'B', 'M', 'N']
for i in range(0, 4):
self.switch_mux(quadrupole[i], 'off', roles[i])
def reset_mux(self):
"""Switch off all multiplexer relays."""
roles = ['A', 'B', 'M', 'N']
for i in range(0, 4):
for j in range(1, self.max_elec + 1):
self.switch_mux(j, 'off', roles[i])
self.exec_logger.debug('All MUX switched off.')
def gain_auto(self, channel):
""" Automatically set the gain on a channel
Parameters
----------
channel:
Returns
-------
float
"""
gain = 2 / 3
if (abs(channel.voltage) < 2.040) and (abs(channel.voltage) >= 1.023):
gain = 2
elif (abs(channel.voltage) < 1.023) and (abs(channel.voltage) >= 0.508):
gain = 4
elif (abs(channel.voltage) < 0.508) and (abs(channel.voltage) >= 0.250):
gain = 8
elif abs(channel.voltage) < 0.256:
gain = 16
self.exec_logger.debug(f'Setting gain to {gain}')
return gain
def run_measurement(self, quad=None, nb_stack=None, injection_duration=None):
""" Do a 4 electrode measurement and measure transfer resistance obtained.
Parameters
----------
quad : iterable (list of int)
Quadrupole to measure.
nb_stack : int, optional
Number of stacks.
injection_duration : int, optional
Injection time in seconds.
"""
# TODO here we can add the current_injected or voltage_injected in mA or mV
# check arguments
if quad is None:
quad = [0, 0, 0, 0]
self.exec_logger.debug('Starting measurement')
self.exec_logger.info('Waiting for data')
if self.on_pi:
if nb_stack is None:
nb_stack = self.settings['nb_stack']
if injection_duration is None:
injection_duration = self.settings['injection_duration']
start_time = time.time()
# inner variable initialization
injection_current = 0
sum_vmn = 0
sum_ps = 0
# injection courant and measure
pin0 = self.mcp.get_pin(0)
pin0.direction = Direction.OUTPUT
pin1 = self.mcp.get_pin(1)
pin1.direction = Direction.OUTPUT
pin0.value = False
pin1.value = False
# FUNCTION AUTOGAIN
# ADS1115 for current measurement (AB)
self.ads_current = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=0x48)
# ADS1115 for voltage measurement (MN)
self.ads_voltage = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=0x49)
# try auto gain
pin1.value = True
pin0.value = False
time.sleep(injection_duration)
gain_current = self.gain_auto(AnalogIn(self.ads_current, ads.P0))
gain_voltage = self.gain_auto(AnalogIn(self.ads_voltage, ads.P0, ads.P1))
pin0.value = False
pin1.value = False
print('gain current: {:.3f}, gain voltage: {:.3f}'.format(gain_current, gain_voltage))
self.ads_current = ads.ADS1115(self.i2c, gain=gain_current, data_rate=860, address=0x48)
self.ads_voltage = ads.ADS1115(self.i2c, gain=gain_voltage, data_rate=860, address=0x49)
# TODO I don't get why 3 + 2*nb_stack - 1? why not just range(nb_stack)?
# or do we consider 1 stack = one full polarity? do we discard the first 3 readings?
for n in range(0, 3 + 2 * nb_stack - 1):
# current injection
if (n % 2) == 0:
pin1.value = True
pin0.value = False # current injection polarity nr1
else:
pin0.value = True
pin1.value = False # current injection nr2
start_delay = time.time() # stating measurement time
time.sleep(injection_duration) # delay depending on current injection duration
# measurement of current i and voltage u
# sampling for each stack at the end of the injection
meas = np.zeros((self.nb_samples, 3))
for k in range(0, self.nb_samples):
# reading current value on ADS channel A0
meas[k, 0] = (AnalogIn(self.ads_current, ads.P0).voltage * 1000) / (50 * self.r_shunt) # TODO: replace 50 by factor depending on INA model specifed in config.py
# reading voltage value on ADS channel A2
meas[k, 1] = -AnalogIn(self.ads_voltage, ads.P0, ads.P1).voltage * self.coef_p2 * 1000 # NOTE: Changed sign
# stop current injection
pin1.value = False
pin0.value = False
end_delay = time.time()
# take average from the samples per stack, then sum them all
# average for all stack is done outside the loop
injection_current = injection_current + (np.mean(meas[:, 0]))
vmn1 = np.mean(meas[:, 1]) - np.mean(meas[:, 2])
if (n % 2) == 0:
sum_vmn = sum_vmn - vmn1
sum_ps = sum_ps + vmn1
else:
sum_vmn = sum_vmn + vmn1
sum_ps = sum_ps + vmn1
# TODO get battery voltage and warn if battery is running low
# TODO send a message on SOH stating the battery level
end_calc = time.time()
# TODO I am not sure I understand the computation below
# wait twice the actual injection time between two injection
# so it's a 50% duty cycle right?
time.sleep(2 * (end_delay - start_delay) - (end_calc - start_delay))
# create a dictionary and compute averaged values from all stacks
d = {
"time": datetime.now().isoformat(),
"A": quad[0],
"B": quad[1],
"M": quad[2],
"N": quad[3],
"inj time [ms]": (end_delay - start_delay) * 1000,
"Vmn [mV]": (sum_vmn / (3 + 2 * nb_stack - 1)),
"I [mA]": (injection_current / (3 + 2 * nb_stack - 1)),
"R [ohm]": (sum_vmn / (3 + 2 * nb_stack - 1) / (injection_current / (3 + 2 * nb_stack - 1))),
"Ps [mV]": (sum_ps / (3 + 2 * nb_stack - 1)),
"nbStack": nb_stack,
"CPU temp [degC]": CPUTemperature().temperature,
"Time [s]": (-start_time + time.time()),
"Nb samples [-]": self.nb_samples
}
else: # for testing, generate random data
d = {'time': datetime.now().isoformat(), 'A': quad[0], 'B': quad[1], 'M': quad[2], 'N': quad[3],
'R [ohm]': np.abs(np.random.randn(1)).tolist()}
# round number to two decimal for nicer string output
output = [f'{k}\t' for k in d.keys()]
output = str(output)[:-1] + '\n'
for k in d.keys():
if isinstance(d[k], float):
val = np.round(d[k], 2)
else:
val = d[k]
output += f'{val}\t'
output = output[:-1]
self.exec_logger.debug(output)
dd = d.copy()
dd.update({'A': str(dd['A'])})
dd.update({'B': str(dd['B'])})
dd.update({'M': str(dd['M'])})
dd.update({'N': str(dd['N'])})
print(np.dtype(d['A']))
print(json.dumps(dd))
self.data_logger.info(json.dumps(dd))
time.sleep(1) # NOTE: why this?
return d
def rs_check(self):
""" Check contact resistance.
"""
# create custom sequence where MN == AB
# we only check the electrodes which are in the sequence (not all might be connected)
if self.sequence is None or not self.use_mux:
quads = np.array([[1, 2, 1, 2]], dtype=np.uint32)
else:
elec = np.sort(np.unique(self.sequence.flatten())) # assumed order
quads = np.vstack([
elec[:-1],
elec[1:],
elec[:-1],
elec[1:],
]).T
# create filename to store RS
export_path_rs = self.settings['export_path'].replace('.csv', '') \
+ '_' + datetime.now().strftime('%Y%m%dT%H%M%S') + '_rs.csv'
# perform RS check
# self.run = True
self.status = 'running'
if self.on_pi:
# make sure all mux are off to start with
self.reset_mux()
# measure all quad of the RS sequence
for i in range(0, quads.shape[0]):
quad = quads[i, :] # quadrupole
# NOTE (GB): I'd use the self.run_measurement() for all this middle part so we an make use of autogain and so ...
# call the switch_mux function to switch to the right electrodes
# self.switch_mux_on(quad)
# run a measurement
# current_measurement = self.run_measurement(quad, 1, 0.25)
# switch mux off
# self.switch_mux_off(quad)
self.switch_mux_on(quad)
# current injection
pin0 = self.mcp.get_pin(0)
pin0.direction = Direction.OUTPUT
pin1 = self.mcp.get_pin(1)
pin1.direction = Direction.OUTPUT
pin0.value = False
pin1.value = False
# call the switch_mux function to switch to the right electrodes
self.ads_current = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=0x48)
# ADS1115 for voltage measurement (MN)
self.ads_voltage = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=0x49)
pin1.value = True # inject from pin1 to pin0
pin0.value = False
time.sleep(0.2)
# measure current and voltage
current = AnalogIn(self.ads_current, ads.P0).voltage / (50 * self.r_shunt)
voltage = 12.
# compute resistance measured (= contact resistance)
resistance = np.abs(voltage / current)
msg = f'Contact resistance {str(quad):s}: I: {current * 1000.:>10.3f} mA, ' \
f'V: {voltage * 1000.:>10.3f} mV, ' \
f'R: {resistance /1000.:>10.3f} kOhm'
self.exec_logger.debug(msg)
# if contact resistance = 0 -> we have a short circuit!!
if resistance < 1e-2:
msg = f'!!!SHORT CIRCUIT!!! {str(quad):s}: {resistance / 1000.:.3f} kOhm'
self.exec_logger.warning(msg)
# save data and print in a text file
self.append_and_save(export_path_rs, {
'A': quad[0],
'B': quad[1],
'RS [kOhm]': resistance / 1000.,
})
# close mux path and put pin back to GND
self.switch_mux_off(quad)
pin0.value = False
pin1.value = False
self.reset_mux()
else:
pass
self.status = 'idle'
# self.run = False
#
# # TODO if interrupted, we would need to restore the values
# # TODO or we offer the possibility in 'run_measurement' to have rs_check each time?
@staticmethod
def append_and_save(filename, last_measurement):
"""Append and save last measurement dataframe.
Parameters
----------
filename : str
filename to save the last measurement dataframe
last_measurement : dict
Last measurement taken in the form of a python dictionary
"""
if os.path.isfile(filename):
# Load data file and append data to it
with open(filename, 'a') as f:
w = csv.DictWriter(f, last_measurement.keys())
w.writerow(last_measurement)
# last_measurement.to_csv(f, header=False)
else:
# create data file and add headers
with open(filename, 'a') as f:
w = csv.DictWriter(f, last_measurement.keys())
w.writeheader()
w.writerow(last_measurement)
# last_measurement.to_csv(f, header=True)
def process_commands(self, command):
try:
cmd_id = None
decoded_message = json.loads(command)
cmd_id = decoded_message.pop('cmd_id', None)
cmd = decoded_message.pop('cmd', None)
args = decoded_message.pop('args', None)
status = False
e = None
if cmd is not None and cmd_id is not None:
if cmd == 'update_settings' and args is not None:
self._update_acquisition_settings(args)
status = True
elif cmd == 'set_sequence' and args is not None:
try:
self.sequence = np.loadtxt(StringIO(args)).astype('uint32')
status = True
except Exception as e:
self.exec_logger.warning(f'Unable to set sequence: {e}')
status = False
elif cmd == 'start':
self.measure(cmd_id)
while not self.status == 'idle':
time.sleep(0.1)
status = True
elif cmd == 'stop':
self.stop()
status = True
elif cmd == 'load_sequence':
try:
self.load_sequence(args)
status = True
except Exception as e:
self.exec_logger.warning(f'Unable to load sequence: {e}')
status = False
elif cmd == 'rs_check':
try:
self.rs_check()
status = True
except Exception as e:
print('error====', e)
self.exec_logger.warning(f'Unable to run rs-check: {e}')
else:
self.exec_logger.warning(f'Unknown command {cmd} - cmd_id: {cmd_id}')
except Exception as e:
self.exec_logger.warning(f'Unable to decode command {command}: {e}')
status = False
finally:
reply = {'cmd_id': cmd_id, 'status': status}
reply = json.dumps(reply)
self.exec_logger.debug(f'Execution report: {reply}')
def measure(self, cmd_id=None):
"""Run the sequence in a separate thread. Can be stopped by 'OhmPi.stop()'.
"""
# self.run = True
self.status = 'running'
self.exec_logger.debug(f'Status: {self.status}')
self.exec_logger.debug(f'Measuring sequence: {self.sequence}')
def func():
for g in range(0, self.settings["nbr_meas"]): # for time-lapse monitoring
if self.status != 'running':
self.exec_logger.warning('Data acquisition interrupted')
break
t0 = time.time()
# create filename with timestamp
filename = self.settings["export_path"].replace('.csv',
f'_{datetime.now().strftime("%Y%m%dT%H%M%S")}.csv')
self.exec_logger.debug(f'Saving to {filename}')
# make sure all multiplexer are off
self.reset_mux()
# measure all quadrupole of the sequence
if self.sequence is None:
n = 1
else:
n = self.sequence.shape[0]
for i in range(0, n):
if self.sequence is None:
quad = np.array([0, 0, 0, 0])
else:
quad = self.sequence[i, :] # quadrupole
if self.status == 'stopping':
break
# call the switch_mux function to switch to the right electrodes
self.switch_mux_on(quad)
# run a measurement
acquired_data = self.run_measurement(quad, self.settings['nb_stack'],
self.settings['injection_duration'])
# switch mux off
self.switch_mux_off(quad)
# add command_id in dataset
acquired_data.update({'cmd_id': cmd_id})
# log data to the data logger
self.data_logger.info(f'{acquired_data}')
print(f'{acquired_data}')
# save data and print in a text file
self.append_and_save(filename, acquired_data)
self.exec_logger.debug(f'{i+1:d}/{n:d}')
# compute time needed to take measurement and subtract it from interval
# between two sequence run (= sequence_delay)
measuring_time = time.time() - t0
sleep_time = self.settings["sequence_delay"] - measuring_time
if sleep_time < 0:
# it means that the measuring time took longer than the sequence delay
sleep_time = 0
self.exec_logger.warning('The measuring time is longer than the sequence delay. '
'Increase the sequence delay')
# sleeping time between sequence
if self.settings["nbr_meas"] > 1:
time.sleep(sleep_time) # waiting for next measurement (time-lapse)
self.status = 'idle'
self.thread = threading.Thread(target=func)
self.thread.start()
def stop(self):
"""Stop the acquisition.
"""
self.status = 'stopping'
if self.thread is not None:
self.thread.join()
self.exec_logger.debug(f'Status: {self.status}')
def quit(self):
"""Quit OhmPi.
"""
self.cmd_listen = False
if self.cmd_thread is not None:
self.cmd_thread.join()
self.exec_logger.debug(f'Stopped listening to tcp port.')
exit()
VERSION = '2.1.5'
print(colored(r' ________________________________' + '\n' +
r'| _ | | | || \/ || ___ \_ _|' + '\n' +
r'| | | | |_| || . . || |_/ / | |' + '\n' +
r'| | | | _ || |\/| || __/ | |' + '\n' +
r'\ \_/ / | | || | | || | _| |_' + '\n' +
r' \___/\_| |_/\_| |_/\_| \___/ ', 'red'))
print('OhmPi start')
print('Version:', VERSION)
platform, on_pi = OhmPi.get_platform()
if on_pi:
print(colored(f'Running on {platform} platform', 'green'))
# TODO: check model for compatible platforms (exclude Raspberry Pi versions that are not supported...)
# and emit a warning otherwise
if not arm64_imports:
print(colored(f'Warning: Required packages are missing.\n'
f'Please run ./env.sh at command prompt to update your virtual environment\n', 'yellow'))
else:
print(colored(f'Not running on the Raspberry Pi platform.\nFor simulation purposes only...', 'yellow'))
current_time = datetime.now()
print(current_time.strftime("%Y-%m-%d %H:%M:%S"))
# for testing
if __name__ == "__main__":
ohmpi = OhmPi(settings=OHMPI_CONFIG['settings'])