Newer
Older
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
#######################################
#### LSPyIV --TRANSFORMATION MODULE
#######################################
Python LSPIV tools
Contains all definitions/functions that deals with
transformations between coordinate systems (image/world)
"""
import numpy as np
import os
from tkinter import Tk
from tkinter.filedialog import askopenfilename
class GRP:
"""Groud Reference Points class"""
def __init__(self):
# World coordinates
self.X = -99.99
self.Y = -99.99
self.Z = -99.99
# Image coordinates
self.i = -99
self.j = -99
class imgRef:
"""Image References for transformations"""
def __init__(self):
self.xyMin = (-99.99,-99.99)
self.xyMax = (-99.99,-99.99)
self.res = -99.99
self.ninj = (-99,-99) # Size of ORIGINAL image
class camera:
"""Camera class. contains many informations that could also be used for other purposes"""
def __init__(self):
self.position = [] # usually 3-D vector (numpy array)
self.angles = [] # usually 3D vector (numpy array)
self.intrinsic = {} # dict containing intrinsic parameters
self.scale = -99 # used for orthophotographic camera (equals to zoom factor)
self.fps = -99
self.resolution = -99 # resolution of the camera (usually in m/pix or pix/m)
self.resolutionInfo = "" # enter here the unit of resolution to avoid confusions
self.imagesize = () # size of image (tuple)
self.a = [] # a matrix from DLT, used to convert world to image space
self.a_inv = [] # a_inv matrix, used to convert from image to world coordinates
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
def read_a(self,filename = ""):
"""
Reads the file containing the a matrix for transformation between space and image coodinate s
Parameters
----------
filename : [str], optional
Path to the file 'coeff.dat'. If "" then a GUI will be opened to select file
The default is "".
Returns
-------
- errno [int]
Error number. Possible values :
- 0 - no errors
- 1 - wrong format contains file coeff.dat
"""
# ---- Initialisation
isExist = os.path.exists(filename) # Check if file exists
if (filename == "") or (isExist == False):
# Open GUI to find file - tkinker lib is used
Tk().withdraw()
filename = askopenfilename(title = "Select coeff.dat", filetypes = (("coeff file","coeff.dat"),("all files","*.*"))) # Get file path
if (filename[-4:] != ".dat" ):
print("ERROR : file format doesn't match\n")
return 1
# ---- Read coeff.dat
fCoeff = open(filename,"r")
lstExtract = fCoeff.read()
lstExtract = lstExtract.strip()
lstExtract = lstExtract.split("\n")
fCoeff.close()
if(int(lstExtract[0]) == 11):
#-------------------
self.a = np.zeros(11,dtype = float)
# from verif_ortho.f90
self.a[0] = np.float(lstExtract[1])
self.a[1] = np.float(lstExtract[2])
self.a[2] = np.float(lstExtract[3])
self.a[3] = np.float(lstExtract[4])
self.a[4] = np.float(lstExtract[8])
self.a[5] = np.float(lstExtract[9])
self.a[6] = np.float(lstExtract[10])
self.a[7] = np.float(lstExtract[11])
self.a[8] = np.float(lstExtract[5])
self.a[9] = np.float(lstExtract[6])
self.a[10] = np.float(lstExtract[7])
else:
print("ERROR: wrong format from file 'coeff.dat'\n")
return 1
return 0
def read_a_inv(self,filename = ""):
"""
Reads the file containing the a_inv matrix for transformation between space and image coodinate s
Parameters
----------
filename : [str], optional
Path to the file 'coeff.dat'. If "" then a GUI will be opened to select file
The default is "".
Returns
-------
- errno [int]
Error number. Possible values :
- 0 - no errors
- 1 - wrong format contains file coeff.dat
"""
# ---- Initialisation
isExist = os.path.exists(filename) # Check if file exists
if (filename == "") or (isExist == False):
# Open GUI to find file - tkinker lib is used
Tk().withdraw()
filename = askopenfilename(title = "Select coeff_inv.dat", filetypes = (("coeff_inv file","coeff_inv.dat"),("all files","*.*"))) # Get file path
if (filename[-4:] != ".dat" ):
print("ERROR : file format doesn't match\n")
return 1
# ---- Read coeff.dat
fVerif = open(filename,"r")
# Burn first line (header)
ligne = fVerif.readline()
# Initialize arrays
ligne = fVerif.readline()
extract = ligne[:-1].split(' ')
fVerif.close()
# Arrange extracted data
extract = [nb for nb in extract if nb!='']
self.a_inv = np.array(extract,dtype = np.float64)
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
"""
Converts image indexes to world units with information of the camera and xy0.
Assume that the input image is already ortho-rectified (i.e. image can be assumed to be a plan XY)
Parameters
----------
- imgIndx : [npArrayInt]
Indexes of the images to be transformed. --> shape : [(ind),(i,j)]
WARNING : image coordinate are expected.
Values from Fudaa-LSPIV are usually given in a mathematical coordinate space with (0,0) located down left
So the i index need to be "invert" --> correctiIndex = imageSize(i) - iIndexFudaa
- camera : [lspiv.transform.camera()]
Contains the information of the camera
- xyz0 : [npArrayFloat]
Offset (in meters) apply on the values X, Y for transformation
Returns
-------
- SpaceCoord [npArrayFloat]
X,Y values in meters
- errno [int]
In case of an error this function returns an integer
- 1 - Information missing on the camera : no resolution and no scaling
- 2 - Image isn't squarred, problem with scaling...
- 3 - ResolutionInfo of the camera isn't recognize
"""
if self.resolutionInfo == "":
# Case no resolution is entered, use simple scaling (typical blender case with othographic camera)
if self.scale == -99:
print("ERROR : Information missing on the camera : no resolution and no scaling")
return 1
# Image size is assumed to be squared
if self.imagesize[0]!=self.imagesize[1]:
print("ERROR : Image isn't squarred, problem with scaling...")
return 1
res = self.imagesize[0] / self.scale
elif self.resolutionInfo == "m/pix":
# Case resolution is given in meter/pixels (typical units from Fudaa-LSPIV project)
res = 1/self.resolution
elif self.resolutionInfo == "pix/m":
# Case resolution is given in pixels/meter
res = self.resolution
else:
print("ERROR : resolution information of the camera isn't recognize. Expected : 'm/pix' or 'pix/m'")
return 3
# If no xy0 are passed to the function they're calculated from the camera data
xy0 = (self.position - (0.5*self.scale))[:2]
if len(imgIndx)==0:
print("WARNING : imgIndx is empty...")
# Swap column to get (j,i) as j is x and i is y
if ni == True:
ni = np.max(imgIndx[:,0])
JIimgIndx = np.array([imgIndx[:,1],ni-imgIndx[:,0]]).T
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
out = (JIimgIndx/res) + xy0
return out
def velSpace2dispImage(self,spaceVel,xy0 = np.nan):
"""
Converts image indexes to world units with information of the camera and xy0.
Assume that the input image is already ortho-rectified (i.e. image can be assumed to be a plan XY)
Parameters
----------
- imgIndx : [npArrayInt]
Indexes of the images to be transformed. --> shape : [(ind),(i,j)]
WARNING : image coordinate are expected.
Values from Fudaa-LSPIV are usually given in a mathematical coordinate space with (0,0) located down left
So the i index need to be "invert" --> correctiIndex = imageSize(i) - iIndexFudaa
- camera : [lspiv.transform.camera()]
Contains the information of the camera
- xyz0 : [npArrayFloat]
Offset (in meters) apply on the values X, Y for transformation
Returns
-------
- SpaceCoord [npArrayFloat]
X,Y values in meters
- errno [int]
In case of an error this function returns an integer
- 1 - Information missing on the camera : no resolution and no scaling
- 2 - Image isn't squarred, problem with scaling...
- 3 - ResolutionInfo of the camera isn't recognize
"""
# if isinstance(camera,transform.camera):
# print("\nERROR : wrong format of camera passed to the function. Expected : lspiv.transform.camera ")
# return 1
if self.resolutionInfo == "":
# Case no resolution is entered, use simple scaling (typical blender case with othographic camera)
if self.scale == -99:
print("\nERROR : Information missing on the camera : no resolution and no scaling")
return 1
# Image size is assumed to be squared
if self.imagesize[0]!=self.imagesize[1]:
print("\nERROR : Image isn't squarred, problem with scaling...")
return 1
res = self.imagesize[0] / self.scale
elif self.resolutionInfo == "m/pix":
# Case resolution is given in meter/pixels (typical units from Fudaa-LSPIV project)
res = 1/self.resolution
elif self.resolutionInfo == "pix/m":
# Case resolution is given in pixels/meter
res = self.resolution
else:
print("\nERROR : resolution information of the camera isn't recognize. Expected : 'm/pix' or 'pix/m'")
return 3
# If no xy0 are passed to the function they're calculated from the camera data
if np.isnan(xy0):
xy0 = (self.position - (0.5*self.scale))[:2]
if len(spaceVel)==0:
print("\nWARNING : Values are empty...")
# Compute displacement based on camera info
XYdisp = spaceVel / self.fps
JIspaceV = (XYdisp)*res
# Swap column to get (i,j) as x is j and y is i
IJindex = np.array([JIspaceV[:,1],JIspaceV[:,0]]).T
# Invert i ax
IJindex[:,0] = -IJindex[:,0]
return IJindex
###################
#### FUNCTIONS
###################
def read_a(filename = ""):
"""
Reads the file containing the a matrix for transformation between space and image coodinate s
Parameters
----------
filename : [str], optional
Path to the file 'coeff.dat'. If "" then a GUI will be opened to select file
The default is "".
Returns
-------
- errno [int]
Error number. Possible values :
- 0 - no errors
- 1 - wrong format contains file coeff.dat
"""
# ---- Initialisation
isExist = os.path.exists(filename) # Check if file exists
if (filename == "") or (isExist == False):
# Open GUI to find file - tkinker lib is used
Tk().withdraw()
filename = askopenfilename(title = "Select coeff.dat", filetypes = (("coeff file","coeff.dat"),("all files","*.*"))) # Get file path
if (filename[-4:] != ".dat" ):
print("ERROR : file format doesn't match\n")
return 1
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
# ---- Read coeff.dat
fCoeff = open(filename,"r")
lstExtract = fCoeff.read()
lstExtract = lstExtract.strip()
lstExtract = lstExtract.split("\n")
fCoeff.close()
if(int(lstExtract[0]) == 11):
#-------------------
a = np.zeros(11,dtype = float)
# from verif_ortho.f90
a[0] = np.float(lstExtract[1])
a[1] = np.float(lstExtract[2])
a[2] = np.float(lstExtract[3])
a[3] = np.float(lstExtract[4])
a[4] = np.float(lstExtract[8])
a[5] = np.float(lstExtract[9])
a[6] = np.float(lstExtract[10])
a[7] = np.float(lstExtract[11])
a[8] = np.float(lstExtract[5])
a[9] = np.float(lstExtract[6])
a[10] = np.float(lstExtract[7])
else:
print("ERROR: wrong format from file 'coeff.dat'\n")
return 1
return a
def read_a_inv(filename = ""):
"""
Reads the file containing the a_inv matrix for transformation between space and image coodinate s
Parameters
----------
filename : [str], optional
Path to the file 'coeff.dat'. If "" then a GUI will be opened to select file
The default is "".
Returns
-------
- errno [int]
Error number. Possible values :
- 0 - no errors
- 1 - wrong format contains file coeff.dat
"""
# ---- Initialisation
isExist = os.path.exists(filename) # Check if file exists
if (filename == "") or (isExist == False):
# Open GUI to find file - tkinker lib is used
Tk().withdraw()
filename = askopenfilename(title = "Select coeff_inv.dat", filetypes = (("coeff_inv file","coeff_inv.dat"),("all files","*.*"))) # Get file path
if (filename[-4:] != ".dat" ):
print("ERROR : file format doesn't match\n")
return 1
# ---- Read coeff.dat
fVerif = open(filename,"r")
# Burn first line (header)
ligne = fVerif.readline()
# Initialize arrays
ligne = fVerif.readline()
extract = ligne[:-1].split(' ')
fVerif.close()
# Arrange extracted data
extract = [nb for nb in extract if nb!='']
a_inv = np.array(extract,dtype = np.float64)
return a_inv
# Space coordinates to image coordinate (from Fudaa-LSPIV source)
def space2CRT(a,x,y,h):
xp=((a[0]*x)+(a[1]*y)+(a[2]*h+a[3])) / ((a[8]*x)+(a[9]*y)+(a[10]*h+1))
yp=((a[4]*x)+(a[5]*y)+((a[6]*h)+a[7])) / ((a[8]*x)+(a[9]*y)+(a[10]*h+1))
return (yp,xp)
# Image to space coordinate
def CRT2space(a_inv,i,j):
x = (a_inv[0]*j+a_inv[1]*i+a_inv[2]) / (a_inv[3]*j+a_inv[4]*i+a_inv[5])
y = (a_inv[6]*j+a_inv[7]*i+a_inv[8]) / (a_inv[3]*j+a_inv[4]*i+a_inv[5])
return (x,y)
def CRT2space2D(a_inv,i,j):
x = (a_inv[0]*j+a_inv[1]*i+a_inv[2]) / (a_inv[6]*j+a_inv[7]*i+1)
y = (a_inv[3]*j+a_inv[4]*i+a_inv[5]) / (a_inv[6]*j+a_inv[7]*i+1)
return (x,y)
def read_grid(filename = ""):
"""
Reads grid.dat file and arrange it following the indexing order.
Parameters
----------
filename : [str], optional
Path to the file 'coeff.dat'. If "" then a GUI will be opened to select file
The default is "".
indexing : [str], optional
Defines the order used to store data.
- "ij" : traditionnal ij indexing (used for images)
- "raw": Fudaa-LSPIV indexing (raw values in grid.dat)
Returns
-------
- errno [int]
Error number. Possible values :
- 0 - no errors
- 1 - wrong format contains file coeff.dat
"""
# ---- Initialisation
isExist = os.path.exists(filename) # Check if file exists
if (filename == "") or (isExist == False):
# Open GUI to find file - tkinker lib is used
Tk().withdraw()
filename = askopenfilename(title = "Select grid.dat", filetypes = (("grid file","grid.dat"),("all files","*.*"))) # Get file path
if (filename[-4:] != ".dat" ):
print("ERROR : file format doesn't match\n")
return 1
# ---- Read coeff.dat
fGrid = open(filename,"r")
lstExtract = fGrid.read()
lstExtract = lstExtract.strip()
lstExtract = lstExtract.split("\n")
fGrid.close()
i,j = [],[]
# Extract fi,fj (fudaa i and fudaa j)
for el in lstExtract:
fj,fi = el.split()
i.append(int(fi))
j.append(int(fj))
return i,j
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
def bicubic_at(ip,jp,im):
i = int(ip)
j = int(jp)
sum_fx = 0
for k in range(4):
for l in range(4):
sx = abs(j+k-2-jp)
sy = abs(i+l-2-ip)
if ((sx >= 0) and (sx < 1)):
#Cx = un - deux*(sx*sx) + (sx*sx*sx)
Cx = 1. + (sx-2.)*sx*sx
elif ((sx >= 1) and (sx < 2)):
#Cx = four - huit*sx + cinq*(sx*sx) - (sx*sx*sx)
Cx = 4. + ((5. - sx)*sx - 8.)*sx
elif (sx > 2):
Cx = 0.
if ((sy >= 0) and (sy < 1)):
#Cy = un - deux*(sy*sy) + (sy*sy*sy)
Cy = 1 + (sy-2)*sy*sy
elif ((sy >= 1) and (sy < 2)):
#!Cy = four - huit*sy + cinq*(sy*sy) - (sy*sy*sy)
Cy = 4 + ((5. -sy)*sy - 8.)*sy
elif (sy > 2):
Cy = 0.
fx = im[i+l-1,j+k-1]*Cx*Cy
sum_fx = sum_fx+fx
if (int(sum_fx) > 255):
sum_fx = 255
if (int(sum_fx) < 0):
sum_fx = 0
return int(sum_fx)
def readGRPtable(filename):
# Open GRP file
try:
f = open(filename,"r")
buff = f.read()
f.close()
except Exception as e:
print("ERROR reading file coeff.dat : " + str(e))
return 1
# Get number of GRP
i0 = buff.find("\n")
i1 = i0 + buff[i0+1:].find("\n")
nbGRP = int(buff[i0+1:i1+1])
# Read file
if0 = buff.find("j")
tmp = np.array(buff[if0+2:].split(),float)
# Re-arrange data
lstGRP = tmp.reshape((nbGRP,5))
return lstGRP
def writeGRPtable(GRP,filename,ni,nj):
buff = "GRP V2.0 {} {}\n".format(int(ni),int(nj))
buff += "{}\nX\tY\tZ\ti\tj\n".format(int(np.shape(GRP)[0]))
for el in GRP:
buff += "%.3f\t%.3f\t%.3f\t%d\t%d\n"%(el[0],el[1],el[2],int(el[3]),int(el[4]))
# Open GRP file
try:
f = open(filename,"w")
f.write(buff)
f.close()
except Exception as e:
print("ERROR reading file coeff.dat : " + str(e))
return 1
return 0