Commit fc1d9997 authored by Monnet Jean-Matthieu's avatar Monnet Jean-Matthieu
Browse files

Updated with ABAmodel main parameters

No related merge requests found
Showing with 46 additions and 46 deletions
+46 -46
......@@ -131,9 +131,9 @@ subsample <- 1:nrow(plots)
# model calibration
model.ABA <- lidaRtRee::ABAmodel(plots[subsample,variable], metrics[subsample,], transform="boxcox", nmax=4, xy = plots[subsample, c("X", "Y")])
# renames outputs with variable name
row.names(model.ABA$stats) <- names(model.ABA$model) <- variable
row.names(model.ABA$stats) <- variable
# display selected linear regression model
model.ABA$model[[variable]]
model.ABA$model
# display calibration and validation statistics
model.ABA$stats
```
......@@ -149,7 +149,7 @@ round(cor(cbind(model.ABA$values$residual, plots[subsample, c("G.m2.ha","N.ha","
cor.test(model.ABA$values$residual, plots[subsample, variable])
# plot predicted VS field values
par(mfrow=c(1,2))
lidaRtRee::ABAmodelPlot(model.ABA, variable)
lidaRtRee::ABAmodelPlot(model.ABA, main = variable)
plot(plots[subsample, c("G.m2.ha")], model.ABA$values$residual, ylab = "Prediction errors", xlab = "Field values")
abline(h = 0, lty = 2)
```
......@@ -164,7 +164,7 @@ model.ABA.point.metrics$stats
# cor.test(model.ABA.point.metrics$values$residual, plots[subsample, variable])
par(mfrow=c(1,2))
# plot predicted VS field values
lidaRtRee::ABAmodelPlot(model.ABA.point.metrics, variable,
lidaRtRee::ABAmodelPlot(model.ABA.point.metrics, main = variable,
col = ifelse(plots$stratum == "public", "green", "blue"))
legend("topleft", c("public", "private"), col = c("green", "blue"), pch = 1)
plot(plots[subsample, c("G.m2.ha")],
......@@ -207,7 +207,7 @@ knitr::kable(table.output)
par(mfrow = c(1,3))
for (i in names(models.ABA))
{
lidaRtRee::ABAmodelPlot(models.ABA[[i]], i)
lidaRtRee::ABAmodelPlot(models.ABA[[i]], main = i)
}
rm(models.ABA, model.stats)
```
......@@ -241,7 +241,7 @@ for (i in levels(plots[, strat]))
# backup list of models for later use
model.ABA.stratified.boxcox <- model.ABA.stratified
# combine list of models into single object
model.ABA.stratified <- lidaRtRee::ABAmodelCombineStrata(model.ABA.stratified, plots$plotID)
model.ABA.stratified <- lidaRtRee::ABAmodelCombineStrata(model.ABA.stratified, plots$plotId)
# model.ABA.stratified$stats
```
......@@ -256,8 +256,8 @@ table.output <- cbind(model.stats[, c("n", "formula")],
names(table.output) <- c("n", "metrics", "adj-R2.%", "CV-R2.%", "CV-RMSE.%", "CV-RMSE")
knitr::kable(table.output)
par(mfrow=c(1,2))
lidaRtRee::ABAmodelPlot(model.ABA, paste0(variable, ", not stratified"))
lidaRtRee::ABAmodelPlot(model.ABA.stratified, paste0(variable, ", stratified"))
lidaRtRee::ABAmodelPlot(model.ABA, main = paste0(variable, ", not stratified"))
lidaRtRee::ABAmodelPlot(model.ABA.stratified, main = paste0(variable, ", stratified"))
```
## Stratified models with stratum-specific variable tranformations
......@@ -267,7 +267,7 @@ In case one wants to apply different variable transformations, or use different
* public ownership, all metrics, Box-Cox transformation of basal area values (calibrated in the previous paragraph),
+ private ownership, only point cloud metrics, no data transformation.
```{r stratifiedmodelCalibrationTransforation, include=TRUE, warning = FALSE}
```{r stratifiedmodelCalibrationTransformation, include=TRUE, warning = FALSE}
# create list of models for no transformation
model.ABA.stratified.none <- list()
# calibrate each stratum model
......@@ -295,8 +295,8 @@ names(table.output) <- c("n", "metrics", "transform", "adj-R2.%", "CV-R2.%", "CV
knitr::kable(table.output)
# graphics
par(mfrow=c(1,2))
lidaRtRee::ABAmodelPlot(model.ABA, paste0(variable, ", not stratified"))
lidaRtRee::ABAmodelPlot(model.ABA.stratified.mixed, paste0(variable, ", stratified"))
lidaRtRee::ABAmodelPlot(model.ABA, main = paste0(variable, ", not stratified"))
lidaRtRee::ABAmodelPlot(model.ABA.stratified.mixed, main = paste0(variable, ", stratified"))
```
# Save data before next tutorial
......
This diff is collapsed.
No preview for this file type
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment