Newer
Older
created on January 6, 2020.
Update March 2022
Ohmpi.py is a program to control a low-cost and open hardware resistivity meter OhmPi that has been developed by
Rémi CLEMENT (INRAE),Vivien DUBOIS (INRAE), Hélène GUYARD (IGE), Nicolas FORQUET (INRAE), Yannick FARGIER (IFSTTAR)
Olivier KAUFMANN (UMONS) and Guillaume BLANCHY (ILVO).
import time
from datetime import datetime
from termcolor import colored
import threading
from logging_setup import setup_loggers
# from mqtt_setup import mqtt_client_setup
# finish import (done only when class is instantiated as some libs are
# only available on arm64 platform)
try:
import board
import busio
import adafruit_tca9548a
import adafruit_ads1x15.ads1115 as ads
from adafruit_ads1x15.analog_in import AnalogIn
from adafruit_mcp230xx.mcp23008 import MCP23008
from adafruit_mcp230xx.mcp23017 import MCP23017
import digitalio
from digitalio import Direction
from gpiozero import CPUTemperature
arm64_imports = True
except ImportError as e:
print(f'Warning: {e}')
arm64_imports = False
msg_logger, msg_log_filename, data_logger, data_log_filename, logging_level = setup_loggers()
# mqtt_client, measurement_topic = mqtt_client_setup()
# msg_logger.info(f'publishing mqtt to topic {measurement_topic}')
VERSION = '2.0.1'
print('\033[1m'+'\033[31m'+' ________________________________')
print(r'| _ | | | || \/ || ___ \_ _|')
print(r'| | | | |_| || . . || |_/ / | |')
print(r'| | | | _ || |\/| || __/ | |')
print(r'\ \_/ / | | || | | || | _| |_')
print(r' \___/\_| |_/\_| |_/\_| \___/ ')
print('\033[0m')
print('OhmPi start')
print('Version:', VERSION)
current_time = datetime.now()
print(current_time.strftime("%Y-%m-%d %H:%M:%S"))
"""Create the main OhmPi object.
Parameters
----------
config : str, optional
Path to the .json configuration file.
sequence : str, optional
Path to the .txt where the sequence is read. By default, a 1 quadrupole
sequence: 1, 2, 3, 4 is used.
output : str, optional
Either 'print' for a console output or 'mqtt' for publication onto
MQTT broker.
"""
Olivier Kaufmann
committed
def __init__(self, config=None, sequence=None, output='print', data_logger=None, msg_logger=None, soh_logger=None):
# self.on_pi = on_pi # True if run from the RaspberryPi with the hardware, otherwise False for random data
self.output = output # type of output print
self.status = 'idle' # either running or idle
self.run = False # flag is True when measuring
self.thread = None # contains the handle for the thread taking the measurement
self.path = 'data/' # where to save the .csv
Olivier Kaufmann
committed
self.data_logger = data_logger
self.msg_logger = msg_logger
self.soh_logger = soh_logger
if not arm64_imports:
Olivier Kaufmann
committed
self.log_msg(f'Warning: {e}\n Some libraries only available on arm64 platform could not be imported.\n'
f'The Ohmpi class will fake operations for testing purposes.', 'warning')
# read in hardware parameters (settings.py)
self._read_hardware_parameters()
# default acquisition parameters
self.pardict = {
'injection_duration': 0.2,
'nbr_meas': 100,
'sequence_delay': 1,
'nb_stack': 1,
'export_path': 'data/measurement.csv'
Olivier Kaufmann
committed
self.log_msg('Initialized with configuration:' + str(self.pardict), level='debug')
# read quadrupole sequence
if sequence is None:
self.sequence = np.array([[1, 2, 3, 4]])
else:
# activation of I2C protocol
self.i2c = busio.I2C(board.SCL, board.SDA)
# I2C connexion to MCP23008, for current injection
self.mcp = MCP23008(self.i2c, address=0x20)
# ADS1115 for current measurement (AB)
self.ads_current = ads.ADS1115(self.i2c, gain=16, data_rate=860, address=0x48)
self.ads_voltage = ads.ADS1115(self.i2c, gain=2/3, data_rate=860, address=0x49)
Olivier Kaufmann
committed
def log_msg(self, msg, level='debug'):
"""Function for output management.
Parameters
----------
msg : str
Body of the message.
level : str, optional
Level of the message, either: 'error', 'warn', 'debug'
"""
# TODO all message to be logged using python logging library and rotating log
Olivier Kaufmann
committed
if self.msg_logger is not None:
self.msg_logger.info(msg)
# if self.output == 'print':
# if level == 'error':
# print(colored(level.upper() + ' : ' + msg, 'red'))
# elif level == 'warn':
# print(colored(level.upper() + ' : ' + msg, 'yellow'))
# else:
# print(level.upper() + ' : ' + msg)
# elif self.output == 'mqtt':
# if level == 'debug':
# # TODO mqtt transmission here
# pass
def _read_acquisition_parameters(self, config):
"""Read acquisition parameters.
Parameters can be:
- nb_electrodes (number of electrode used, if 4, no MUX needed)
- injection_duration (in seconds)
- nbr_meas (total number of times the sequence will be run)
- sequence_delay (delay in second between each sequence run)
- stack (number of stack for each quadrupole measurement)
- export_path (path where to export the data, timestamp will be added to filename)
Parameters
----------
config : str
Path to the .json or dictionary.
with open(config) as json_file:
dic = json.load(json_file)
Olivier Kaufmann
committed
self.log_msg('Acquisition parameters updated: ' + str(self.pardict), level='debug')
def _read_hardware_parameters(self):
"""Read hardware parameters from settings.py.
"""
from settings import OHMPI_CONFIG
self.id = OHMPI_CONFIG['id'] # ID of the OhmPi
self.r_shunt = OHMPI_CONFIG['R_shunt'] # reference resistance value in ohm
self.Imax = OHMPI_CONFIG['Imax'] # maximum current
Olivier Kaufmann
committed
self.log_msg(f'The maximum current cannot be higher than {self.Imax} mA', level='warn')
self.coef_p2 = OHMPI_CONFIG['coef_p2'] # slope for current conversion for ads.P2, measurement in V/V
self.coef_p3 = OHMPI_CONFIG['coef_p3'] # slope for current conversion for ads.P3, measurement in V/V
self.offset_p2 = OHMPI_CONFIG['offset_p2']
self.offset_p3 = OHMPI_CONFIG['offset_p3']
self.nb_samples = OHMPI_CONFIG['integer'] # number of samples measured for each stack
self.version = OHMPI_CONFIG['version'] # hardware version
self.max_elec = OHMPI_CONFIG['max_elec'] # maximum number of electrodes
self.board_address = OHMPI_CONFIG['board_address']
Olivier Kaufmann
committed
self.log_msg('OHMPI_CONFIG = ' + str(OHMPI_CONFIG), level='debug')
@staticmethod
def find_identical_in_line(quads):
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
"""Find quadrupole which where A and B are identical.
If A and B are connected to the same relay, the Pi burns (short-circuit).
Parameters
----------
quads : 1D or 2D array
List of quadrupoles of shape nquad x 4 or 1D vector of shape nquad.
Returns
-------
output : 1D array of int
List of index of rows where A and B are identical.
"""
# TODO is this needed for M and N?
# if we have a 1D array (so only 1 quadrupole), make it 2D
if len(quads.shape) == 1:
quads = quads[None, :]
output = np.where(quads[:, 0] == quads[:, 1])[0]
# output = []
# if array_object.ndim == 1:
# temp = np.zeros(4)
# for i in range(len(array_object)):
# temp[i] = np.count_nonzero(array_object == array_object[i])
# if any(temp > 1):
# output.append(0)
# else:
# for i in range(len(array_object[:,1])):
# temp = np.zeros(len(array_object[1,:]))
# for j in range(len(array_object[1,:])):
# temp[j] = np.count_nonzero(array_object[i,:] == array_object[i,j])
# if any(temp > 1):
# output.append(i)
return output
@property
def on_pi(self):
"""Returns True if code is running on a raspberry pi and required arm64 libs have been imported"""
running_on_pi = False
try:
with io.open('/sys/firmware/devicetree/base/model', 'r') as f:
if 'raspberry pi' in f.read().lower():
running_on_pi = True
except FileNotFoundError:
pass
return running_on_pi and arm64_imports
def read_quad(self, filename):
"""Read quadrupole sequence from file.
Parameters
----------
filename : str
Path of the .csv or .txt file with A, B, M and N electrodes.
Electrode index start at 1.
Returns
-------
output : numpy.array
Array of shape (number quadrupoles * 4).
"""
output = np.loadtxt(filename, delimiter=" ", dtype=int) # load quadrupole file
# locate lines where the electrode index exceeds the maximum number of electrodes
test_index_elec = np.array(np.where(output > self.max_elec))
test_same_elec = self.find_identical_in_line(output)
# if statement with exit cases (TODO rajouter un else if pour le deuxième cas du ticket #2)
if test_index_elec.size != 0:
for i in range(len(test_index_elec[0, :])):
Olivier Kaufmann
committed
self.log_msg('Error: An electrode index at line ' + str(test_index_elec[0, i] + 1) +
' exceeds the maximum number of electrodes', level='error')
# sys.exit(1)
output = None
elif len(test_same_elec) != 0:
for i in range(len(test_same_elec)):
Olivier Kaufmann
committed
self.log_msg('Error: An electrode index A == B detected at line ' + str(test_same_elec[i] + 1),
level="error")
Olivier Kaufmann
committed
self.log_msg('Sequence of {:d} quadrupoles read.'.format(output.shape[0]), level='debug')
def switch_mux(self, electrode_nr, state, role):
"""Select the right channel for the multiplexer cascade for a given electrode.
Parameters
----------
electrode_nr : int
Electrode index to be switched on or off.
state : str
Either 'on' or 'off'.
role : str
Either 'A', 'B', 'M' or 'N', so we can assign it to a MUX board.
"""
if self.sequence.max() <= 4: # only 4 electrodes so no MUX
pass
else:
# choose with MUX board
tca = adafruit_tca9548a.TCA9548A(self.i2c, self.board_address[role])
# find I2C address of the electrode and corresponding relay
# TODO from number of electrode, the below can be guessed
# considering that one MCP23017 can cover 16 electrodes
electrode_nr = electrode_nr - 1 # switch to 0 indexing
i2c_address = 7 - electrode_nr // 16 # quotient without rest of the division
relay_nr = relay_nr + 1 # switch back to 1 based indexing
# if electrode_nr < 17:
# i2c_address = 7
# relay_nr = electrode_nr
# elif 16 < electrode_nr < 33:
# i2c_address = 6
# relay_nr = electrode_nr - 16
# elif 32 < electrode_nr < 49:
# i2c_address = 5
# relay_nr = electrode_nr - 32
# elif 48 < electrode_nr < 65:
# i2c_address = 4
# relay_nr = electrode_nr - 48
if i2c_address is not None:
# select the MCP23017 of the selected MUX board
mcp2 = MCP23017(tca[i2c_address])
mcp2.get_pin(relay_nr-1).direction = digitalio.Direction.OUTPUT
if state == 'on':
mcp2.get_pin(relay_nr-1).value = True
else:
mcp2.get_pin(relay_nr-1).value = False
Olivier Kaufmann
committed
self.log_msg(f'Switching relay {relay_nr} {state} for electrode {electrode_nr}', level='debug')
Olivier Kaufmann
committed
self.log_msg(f'Unable to address electrode nr {electrode_nr}', level='warn')
def switch_mux_on(self, quadrupole):
"""Switch on multiplexer relays for given quadrupole.
Parameters
----------
quadrupole : list of 4 int
List of 4 integers representing the electrode numbers.
"""
roles = ['A', 'B', 'M', 'N']
# another check to be sure A != B
if quadrupole[0] != quadrupole[1]:
for i in range(0, 4):
self.switch_mux(quadrupole[i], 'on', roles[i])
else:
Olivier Kaufmann
committed
self.log_msg('A == B -> short circuit detected!', level='error')
def switch_mux_off(self, quadrupole):
"""Switch off multiplexer relays for given quadrupole.
Parameters
----------
quadrupole : list of 4 int
List of 4 integers representing the electrode numbers.
"""
roles = ['A', 'B', 'M', 'N']
for i in range(0, 4):
self.switch_mux(quadrupole[i], 'off', roles[i])
def reset_mux(self):
"""Switch off all multiplexer relays."""
roles = ['A', 'B', 'M', 'N']
for i in range(0, 4):
for j in range(1, self.max_elec + 1):
Olivier Kaufmann
committed
self.log_msg('All MUX switched off.', level='debug')
def run_measurement(self, quad, nb_stack=None, injection_duration=None): # NOTE: quad not used?!
""" Do a 4 electrode measurement and measure transfer resistance obtained.
Parameters
----------
nb_stack : int, optional
Number of stacks.
injection_duration : int, optional
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
Injection time in seconds.
quad : list of int
Quadrupole to measure.
"""
# TODO here we can add the current_injected or voltage_injected in mA or mV
# check arguments
if nb_stack is None:
nb_stack = self.pardict['stack']
if injection_duration is None:
injection_duration = self.pardict['injection_duration']
start_time = time.time()
# inner variable initialization
injection_current = 0
sum_vmn = 0
sum_ps = 0
# injection courant and measure
pin0 = self.mcp.get_pin(0)
pin0.direction = Direction.OUTPUT
pin1 = self.mcp.get_pin(1)
pin1.direction = Direction.OUTPUT
pin0.value = False
pin1.value = False
# TODO I don't get why 3 + 2*nb_stack - 1? why not just rnage(nb_stack)?
# or do we consider 1 stack = one full polarity? do we discard the first 3 readings?
for n in range(0, 3+2*nb_stack-1):
# current injection
if (n % 2) == 0:
pin1.value = True
pin0.value = False # current injection polarity nr1
else:
pin0.value = True
pin1.value = False # current injection nr2
start_delay = time.time() # stating measurement time
time.sleep(injection_duration) # delay depending on current injection duration
# measurement of current i and voltage u
# sampling for each stack at the end of the injection
# reading current value on ADS channel A0
meas[k, 0] = (AnalogIn(self.ads_current, ads.P0).voltage*1000) / (50 * self.r_shunt)
meas[k, 1] = AnalogIn(self.ads_voltage, ads.P0).voltage * self.coef_p2 * 1000
# reading voltage value on ADS channel A2
meas[k, 2] = AnalogIn(self.ads_voltage, ads.P1).voltage * self.coef_p3 * 1000
# stop current injection
pin1.value = False
pin0.value = False
end_delay = time.time()
# take average from the samples per stack, then sum them all
# average for all stack is done outside the loop
injection_current = injection_current + (np.mean(meas[:, 0]))
vmn1 = np.mean(meas[:, 1]) - np.mean(meas[:, 2])
if (n % 2) == 0:
sum_vmn = sum_vmn - vmn1
sum_ps = sum_ps + vmn1
else:
sum_vmn = sum_vmn + vmn1
sum_ps = sum_ps + vmn1
# TODO get battery voltage and warn if battery is running low
end_calc = time.time()
# TODO I am not sure I understand the computation below
# wait twice the actual injection time between two injection
# so it's a 50% duty cycle right?
time.sleep(2*(end_delay-start_delay)-(end_calc-start_delay))
# create a dictionary and compute averaged values from all stacks
d = {
"A": [1],
"B": [2],
"M": [3],
"N": [4],
"inj time [ms]": (end_delay - start_delay) * 1000,
"Vmn [mV]": [(sum_vmn / (3 + 2 * nb_stack - 1))],
"I [mA]": [(injection_current / (3 + 2 * nb_stack - 1))],
"R [ohm]": [(sum_vmn / (3 + 2 * nb_stack - 1) / (injection_current / (3 + 2 * nb_stack - 1)))],
"Ps [mV]": [(sum_ps / (3 + 2 * nb_stack - 1))],
"nbStack": [nb_stack],
"CPU temp [degC]": [CPUTemperature().temperature],
"Time [s]": [(-start_time + time.time())],
"Nb samples [-]": [self.nb_samples]
# round number to two decimal for nicer string output
output = [f'{d[k]}\t' for k in d.keys]
output = output[:-1] + '\n'
for k in d.keys:
if isinstance(d[k], float):
val = np.round(d[k], 2)
else:
val = d[k]
output += f'{val}\t'
output = output[:-1]
Olivier Kaufmann
committed
self.log_msg(output, level='debug')
time.sleep(1) # NOTE: why this?
def rs_check(self):
"""Check contact resistance.
"""
# create custom sequence where MN == AB
nelec = self.sequence.max() # number of elec used in the sequence
quads = np.vstack([
np.arange(nelec - 1) + 1,
np.arange(nelec - 1) + 2,
np.arange(nelec - 1) + 1,
np.arange(nelec - 1) + 2
]).T
# create backup TODO not good
export_path = self.pardict['export_path'].copy()
sequence = self.sequence.copy()
# assign new value
self.pardict['export_path'] = export_path.replace('.csv', '_rs.csv')
self.sequence = quads
# run the RS check
Olivier Kaufmann
committed
self.log_msg('RS check (check contact resistance)', level='debug')
# restore
self.pardict['export_path'] = export_path
self.sequence = sequence
# TODO if interrupted, we would need to restore the values
# TODO or we offer the possiblity in 'run_measurement' to have rs_check each time?
@staticmethod
def append_and_save(fname, last_measurement):
fname : str
filename to save the last measurement dataframe
last_measurement : dict
Last measurement taken in the form of a python dictionary
w = csv.DictWriter(f, last_measurement.keys())
w.writerow(last_measurement)
# last_measurement.to_csv(f, header=False)
w = csv.DictWriter(f, last_measurement.keys())
w.writeheader()
w.writerow(last_measurement)
# last_measurement.to_csv(f, header=True)
"""Run the sequence in a separate thread. Can be stopped by 'OhmPi.stop()'.
"""
self.run = True
self.status = 'running'
Olivier Kaufmann
committed
self.log_msg('status = ' + self.status, level='debug')
for g in range(0, self.pardict["nbr_meas"]): # for time-lapse monitoring
if self.run is False:
Olivier Kaufmann
committed
self.log_msg('INTERRUPTED', level='debug')
fname = self.pardict["export_path"].replace('.csv', '_' + datetime.now().strftime('%Y%m%dT%H%M%S')
+ '.csv')
Olivier Kaufmann
committed
self.log_msg('saving to ' + fname, level='debug')
# make sure all multiplexer are off
self.reset_mux()
# measure all quadrupole of the sequence
for i in range(0, self.sequence.shape[0]):
quad = self.sequence[i, :] # quadrupole
if self.run is False:
# call the switch_mux function to switch to the right electrodes
if self.on_pi:
current_measurement = self.run_measurement(quad, self.pardict["stack"],
self.pardict["injection_duration"])
current_measurement = {
'A': [quad[0]], 'B': [quad[1]], 'M': [quad[2]], 'N': [quad[3]],
'R [ohm]': np.abs(np.random.randn(1))
}
# save data and print in a text file
Olivier Kaufmann
committed
self.log_msg('{:d}/{:d}'.format(i + 1, self.sequence.shape[0]), level='debug')
# compute time needed to take measurement and subtract it from interval
# between two sequence run (= sequence_delay)
sleep_time = self.pardict["sequence_delay"] - measuring_time
if sleep_time < 0:
# it means that the measuring time took longer than the sequence delay
sleep_time = 0
Olivier Kaufmann
committed
self.log_msg('The measuring time is longer than the sequence delay. Increase the sequence delay',
level='warn')
# sleeping time between sequence
if self.pardict["nbr_meas"] > 1:
time.sleep(sleep_time) # waiting for next measurement (time-lapse)
self.thread = threading.Thread(target=func)
self.thread.start()
Olivier Kaufmann
committed
self.log_msg('status = ' + self.status)
# for testing
if __name__ == "__main__":
ohmpi = OhmPi(config='ohmpi_param.json')
ohmpi.measure()
time.sleep(4)
ohmpi.stop()