Newer
Older
Ohmpi.py is a program to control a low-cost and open hardward resistivity meter OhmPi that has been developed by Rémi CLEMENT(INRAE),Vivien DUBOIS(INRAE),Hélène GUYARD(IGE), Nicolas FORQUET (INRAE), and Yannick FARGIER (IFSTTAR).
"""
print('\033[1m'+'\033[31m'+' ________________________________')
print('| _ | | | || \/ || ___ \_ _|')
print('| | | | |_| || . . || |_/ / | |' )
print('| | | | _ || |\/| || __/ | |')
print('\ \_/ / | | || | | || | _| |_')
print(' \___/\_| |_/\_| |_/\_| \___/ ')
print('\033[0m')
print('Version:', VERSION)
print('Import libraries')
import os
import sys
import json
import glob
import numpy as np
import pandas as pd
import time
from datetime import datetime
from termcolor import colored
import threading
import board, busio, adafruit_tca9548a
import adafruit_ads1x15.ads1115 as ADS
from adafruit_ads1x15.analog_in import AnalogIn
from adafruit_mcp230xx.mcp23008 import MCP23008
from adafruit_mcp230xx.mcp23017 import MCP23017
import digitalio
from digitalio import Direction
from gpiozero import CPUTemperature
current_time = datetime.now()
print(current_time.strftime("%Y-%m-%d %H:%M:%S"))
# from logging_setup import setup_loggers
# from mqtt_setup import mqtt_client_setup
# msg_logger, msg_log_filename, data_logger, data_log_filename, logging_level = setup_loggers()
# mqtt_client, measurement_topic = mqtt_client_setup()
# msg_logger.info(f'publishing mqtt to topic {measurement_topic}')
def __init__(self, config=None, sequence=None, onpi=True, output='print'):
"""Create the main OhmPi object.
Parameters
----------
config : str, optional
Path to the .json configuration file.
sequence : str, optional
Path to the .txt where the sequence is read. By default, a 1 quadrupole
sequence: 1, 2, 3, 4 is used.
onpi : bool, optional
True if running on the RaspberryPi. False for testing (random data generated).
output : str, optional
Either 'print' for a console output or 'mqtt' for publication onto
MQTT broker.
"""
# flags and attributes
self.onpi = onpi # True if run from the RaspberryPi with the hardware, otherwise False for random data
self.output = output # type of output print
self.status = 'idle' # either running or idle
self.run = False # flag is True when measuring
self.thread = None # contains the handle for the thread taking the measurement
self.path = 'data/' # wher to save the .csv
# read in hardware parameters (seetings.py)
self._read_hardware_parameters()
# default acquisition parameters
self.pardict = {
'injection_duration': 0.2,
'nbr_meas': 100,
'sequence_delay': 1,
'nb_stack': 1,
'export_path': 'data/measurement.csv'
self._read_acquisition_parameters(config)
self.dump('Initialized with configuration:' + str(self.pardict), level='debug')
# read quadrupole sequence
if sequence is None:
self.sequence = np.array([[1, 2, 3, 4]])
else:
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# address of the multiplexer board
self.board_address = {
'A': 0x76,
'B': 0x71,
'M': 0x74,
'N': 0x70
}
# connect to components on the OhmPi board
if self.onpi:
# activation of I2C protocol
self.i2c = busio.I2C(board.SCL, board.SDA)
# I2C connexion to MCP23008, for current injection
self.mcp = MCP23008(self.i2c, address=0x20)
# ADS1115 for current measurement (AB)
self.ads_current = ADS.ADS1115(self.i2c, gain=16, data_rate=860, address=0x48)
# ADS1115 for voltage measurement (MN)
self.ads_voltage = ADS.ADS1115(self.i2c, gain=2/3, data_rate=860, address=0x49)
def dump(self, msg, level='debug'):
"""Function for output management.
Parameters
----------
msg : str
Body of the message.
level : str, optional
Level of the message, either: 'error', 'warn', 'debug'
"""
# TODO all message to be logged using python logging library and rotatin log
if self.output == 'print':
if level == 'error':
print(colored(level.upper() + ' : ' + msg, 'red'))
print(colored(level.upper() + ' : ' + msg, 'yellow'))
else:
print(level.upper() + ' : ' + msg)
elif self.output == 'mqtt':
if level == 'debug':
# TODO mqtt transmission here
def _read_acquisition_parameters(self, config):
"""Read acquisition parameters.
Parameters can be:
- nb_electrodes (number of electrode used, if 4, no MUX needed)
- injection_duration (in seconds)
- nbr_meas (total number of times the sequence will be run)
- sequence_delay (delay in second between each sequence run)
- stack (number of stack for each quadrupole measurement)
- export_path (path where to export the data, timestamp will be added to filename)
Parameters
----------
config : str
Path to the .json or dictionnary.
"""
with open(config) as json_file:
dic = json.load(json_file)
self.pardict.update(dic)
self.dump('Acquisition parameters updated: ' + str(self.pardict), level='debug')
def _read_hardware_parameters(self):
"""Read hardware parameters from settings.py.
"""
from settings import OHMPI_CONFIG
self.id = OHMPI_CONFIG['id'] # ID of the OhmPi
self.r_shunt = OHMPI_CONFIG['R_shunt'] # reference resistance value in ohm
self.Imax = OHMPI_CONFIG['Imax'] # maximum current
self.dump('The maximum current cannot be higher than 48 mA', level='warn')
self.coef_p2 = OHMPI_CONFIG['coef_p2'] # slope for current conversion for ADS.P2, measurement in V/V
self.coef_p3 = OHMPI_CONFIG['coef_p3'] # slope for current conversion for ADS.P3, measurement in V/V
self.offset_p2 = OHMPI_CONFIG['offset_p2']
self.offset_p3 = OHMPI_CONFIG['offset_p3']
self.nb_samples = OHMPI_CONFIG['integer'] # number of samples measured for each stack
self.version = OHMPI_CONFIG['version'] # hardware version
self.max_elec = OHMPI_CONFIG['max_elec'] # maximum number of electrodes
self.dump('OHMPI_CONFIG = ' + str(OHMPI_CONFIG), level='debug')
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
def find_identical_in_line(self, quads):
"""Find quadrupole which where A and B are identical.
If A and B are connected to the same relay, the Pi burns (short-circuit).
Parameters
----------
quads : 1D or 2D array
List of quadrupoles of shape nquad x 4 or 1D vector of shape nquad.
Returns
-------
output : 1D array of int
List of index of rows where A and B are identical.
"""
# TODO is this needed for M and N?
# if we have a 1D array (so only 1 quadrupole), make it 2D
if len(quads.shape) == 1:
quads = quads[None, :]
output = np.where(quads[:, 0] == quads[:, 1])[0]
# output = []
# if array_object.ndim == 1:
# temp = np.zeros(4)
# for i in range(len(array_object)):
# temp[i] = np.count_nonzero(array_object == array_object[i])
# if any(temp > 1):
# output.append(0)
# else:
# for i in range(len(array_object[:,1])):
# temp = np.zeros(len(array_object[1,:]))
# for j in range(len(array_object[1,:])):
# temp[j] = np.count_nonzero(array_object[i,:] == array_object[i,j])
# if any(temp > 1):
# output.append(i)
return output
def read_quad(self, filename):
"""Read quadrupole sequence from file.
Parameters
----------
filename : str
Path of the .csv or .txt file with A, B, M and N electrodes.
Electrode index start at 1.
Returns
-------
output : numpy.array
Array of shape (number quadrupoles * 4).
"""
output = np.loadtxt(filename, delimiter=" ", dtype=int) # load quadripole file
# locate lines where the electrode index exceeds the maximum number of electrodes
test_index_elec = np.array(np.where(output > self.max_elec))
test_same_elec = self.find_identical_in_line(output)
# if statement with exit cases (TODO rajouter un else if pour le deuxième cas du ticket #2)
if test_index_elec.size != 0:
for i in range(len(test_index_elec[0,:])):
self.dump("Error: An electrode index at line " + str(test_index_elec[0,i]+1) + " exceeds the maximum number of electrodes", level="error")
#sys.exit(1)
output = None
elif len(test_same_elec) != 0:
for i in range(len(test_same_elec)):
self.dump("Error: An electrode index A == B detected at line " + str(test_same_elec[i]+1), level="error")
#sys.exit(1)
output = None
if output is not None:
self.dump('Sequence of {:d} quadrupoles read.'.format(output.shape[0]), level='debug')
def switch_mux(self, electrode_nr, state, role):
"""Select the right channel for the multiplexer cascade for a given electrode.
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
Parameters
----------
electrode_nr : int
Electrode index to be switched on or off.
state : str
Either 'on' or 'off'.
role : str
Either 'A', 'B', 'M' or 'N', so we can assign it to a MUX board.
"""
if self.sequence.max() <= 4: # only 4 electrodes so no MUX
pass
else:
# choose with MUX board
tca = adafruit_tca9548a.TCA9548A(self.i2c, self.board_address[role])
# find I2C addres of the electrode and corresponding relay
# TODO from number of electrode, the below can be guessed
i2c_address = None
# considering that one MCP23017 can cover 16 electrodes
electrode_nr = electrode_nr - 1 # switch to 0 indexing
i2c_address = 7 - electrode_nr // 16 # quotient without rest of the division
relay_nr = electrode_nr - (electrode_nr // 16)*16
relay_nr = relay_nr + 1 # switch back to 1 based indexing
# if electrode_nr < 17:
# i2c_address = 7
# relay_nr = electrode_nr
# elif 16 < electrode_nr < 33:
# i2c_address = 6
# relay_nr = electrode_nr - 16
# elif 32 < electrode_nr < 49:
# i2c_address = 5
# relay_nr = electrode_nr - 32
# elif 48 < electrode_nr < 65:
# i2c_address = 4
# relay_nr = electrode_nr - 48
if i2c_address is not None:
# select the MCP23017 of the selected MUX board
mcp2 = MCP23017(tca[i2c_address])
mcp2.get_pin(relay_nr-1).direction = digitalio.Direction.OUTPUT
if state == 'on':
mcp2.get_pin(relay_nr-1).value = True
else:
mcp2.get_pin(relay_nr-1).value = False
self.dump(f'Switching relay {relay_nr} {state} for electrode {electrode_nr}', level='debug')
else:
self.dump(f'Unable to address electrode nr {electrode_nr}', level='warn')
def switch_mux_on(self, quadrupole):
"""Switch on multiplexer relays for given quadrupole.
Parameters
----------
quadrupole : list of 4 int
List of 4 integers representing the electrode numbers.
"""
roles = ['A', 'B', 'M', 'N']
# another check to be sure A != B
if quadrupole[0] != quadrupole[1]:
for i in range(0, 4):
self.switch_mux(quadrupole[i], 'on', roles[i])
else:
self.dump('A == B -> short circuit detected!', level='error')
def switch_mux_off(self, quadrupole):
"""Switch off multiplexer relays for given quadrupole.
Parameters
----------
quadrupole : list of 4 int
List of 4 integers representing the electrode numbers.
"""
roles = ['A', 'B', 'M', 'N']
for i in range(0, 4):
self.switch_mux(quadrupole[i], 'off', roles[i])
def reset_mux(self):
"""Switch off all multiplexer relays."""
roles = ['A', 'B', 'M', 'N']
for i in range(0, 4):
for j in range(1, self.max_elec + 1):
self.switch_mux(j, 'off', roles[i])
self.dump('All MUX switched off.', level='debug')
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
def run_measurement(self, quad, nb_stack=None, injection_duration=None):
"""Do a 4 electrode measurement and measure transfer resistance obtained.
Parameters
----------
nb_stack : int, optional
Number of stacks.
injection_detlat : int, optional
Injection time in seconds.
quad : list of int
Quadrupole to measure.
"""
# TODO here we can add the current_injected or voltage_injected in mA or mV
# check arguments
if nb_stack is None:
nb_stack = self.pardict['stack']
if injection_duration is None:
injection_duration = self.pardict['injection_duration']
start_time = time.time()
# inner variable initialization
injection_current = 0
sum_vmn = 0
sum_ps = 0
# injection courant and measure
pin0 = self.mcp.get_pin(0)
pin0.direction = Direction.OUTPUT
pin1 = self.mcp.get_pin(1)
pin1.direction = Direction.OUTPUT
pin0.value = False
pin1.value = False
# TODO I don't get why 3 + 2*nb_stack - 1? why not just rnage(nb_stack)?
# or do we consider 1 stack = one full polarity? do we discard the first 3 readings?
for n in range(0, 3+2*nb_stack-1):
# current injection
if (n % 2) == 0:
pin1.value = True
pin0.value = False # current injection polarity nr1
else:
pin0.value = True
pin1.value = False # current injection nr2
start_delay = time.time() # stating measurement time
time.sleep(injection_duration) # delay depending on current injection duration
# measurement of current i and voltage u
# sampling for each stack at the end of the injection
meas[k, 0] = (AnalogIn(self.ads_current, ADS.P0).voltage*1000) / (50 * self.r_shunt) # reading current value on ADS channel A0
meas[k, 1] = AnalogIn(self.ads_voltage, ADS.P0).voltage * self.coef_p2 * 1000
meas[k, 2] = AnalogIn(self.ads_voltage, ADS.P1).voltage * self.coef_p3 * 1000 # reading voltage value on ADS channel A2
# stop current injection
pin1.value = False
pin0.value = False
end_delay = time.time()
# take average from the samples per stack, then sum them all
# average for all stack is done outside the loop
injection_current = injection_current + (np.mean(meas[:, 0]))
vmn1 = np.mean(meas[:, 1]) - np.mean(meas[:, 2])
if (n % 2) == 0:
sum_vmn = sum_vmn - vmn1
sum_ps = sum_ps + vmn1
else:
sum_vmn = sum_vmn + vmn1
sum_ps = sum_ps + vmn1
# TODO get battery voltage and warn if battery is running low
end_calc = time.time()
# TODO I am not sure I undestand the computation below
# wait twice the actual injection time between two injection
# so it's a 50% duty cycle right?
time.sleep(2*(end_delay-start_delay)-(end_calc-start_delay))
# create dateframe and compute averaged values from all stacks
"time": [datetime.now()],
"A": [(1)],
"B": [(2)],
"M": [(3)],
"N": [(4)],
"inj time [ms]": (end_delay - start_delay) * 1000,
"Vmn [mV]": [(sum_vmn / (3 + 2 * nb_stack - 1))],
"I [mA]": [(injection_current / (3 + 2 * nb_stack - 1))],
"R [ohm]": [(sum_vmn / (3 + 2 * nb_stack - 1) / (injection_current / (3 + 2 * nb_stack - 1)))],
"Ps [mV]": [(sum_ps / (3 + 2 * nb_stack - 1))],
"nbStack": [nb_stack],
"CPU temp [degC]": [CPUTemperature().temperature],
"Time [s]": [(-start_time + time.time())],
"Nb samples [-]": [self.nb_samples]
})
# round number to two decimal for nicer string output
output = df.round(2)
self.dump(output.to_string(), level='debug')
time.sleep(1) # TODO why this?
return df
def rs_check(self):
"""Check contact resistance.
"""
# create custom sequence where MN == AB
nelec = self.sequence.max() # number of elec used in the sequence
quads = np.vstack([
np.arange(nelec - 1) + 1,
np.arange(nelec - 1) + 2,
np.arange(nelec - 1) + 1,
np.arange(nelec - 1) + 2
]).T
# create backup TODO not good
export_path = self.pardict['export_path'].copy()
sequence = self.sequence.copy()
# assign new value
self.pardict['export_path'] = export_path.replace('.csv', '_rs.csv')
self.sequence = quads
# run the RS check
self.dump('RS check (check contact resistance)', level='debug')
self.measure()
# restore
self.pardict['export_path'] = export_path
self.sequence = sequence
# TODO if interrupted, we would need to restore the values
# TODO or we offer the possiblity in 'run_measurement' to have rs_check each time?
def append_and_save(self, fname, last_measurement):
Parameters
----------
last_measurement : pandas.DataFrame
Last measurement taken in the form of a pandas dataframe.
"""
last_measurement.to_csv(f, header=False)
else:
# create data file and add headers
"""Run the sequence in a separate thread. Can be stopped by 'OhmPi.stop()'.
"""
self.run = True
self.status = 'running'
for g in range(0, self.pardict["nbr_meas"]): # for time-lapse monitoring
# create filename with timestamp
fname = self.pardict["export_path"].replace('.csv', '_' + datetime.now().strftime('%Y%m%dT%H%M%S') + '.csv')
self.dump('saving to ' + fname, level='debug')
# make sure all multiplexer are off
self.reset_mux()
# measure all quadrupole of the sequence
for i in range(0, self.sequence.shape[0]):
quad = self.sequence[i, :] # quadrupole
# call the switch_mux function to switch to the right electrodes
if self.onpi:
current_measurement = self.run_measurement(quad, self.pardict["stack"], self.pardict["injection_duration"])
current_measurement = pd.DataFrame({
'A': [quad[0]], 'B': [quad[1]], 'M': [quad[2]], 'N': [quad[3]], 'R [ohm]': np.abs(np.random.randn(1))
# save data and print in a text file
self.append_and_save(fname, current_measurement)
self.dump('{:d}/{:d}'.format(i+1, self.sequence.shape[0]), level='debug')
# compute time needed to take measurement and subtract it from interval
# between two sequence run (= sequence_delay)
sleep_time = self.pardict["sequence_delay"] - measuring_time
if sleep_time < 0:
# it means that the measuring time took longer than the sequence delay
sleep_time = 0
self.dump('The measuring time is longer than the sequence delay. Increase the sequence delay', level='warn')
# sleeping time between sequence
if self.pardict["nbr_meas"] > 1:
time.sleep(sleep_time) # waiting for next measurement (time-lapse)
self.thread = threading.Thread(target=func)
self.thread.start()
if self.thread is not None:
self.thread.join()
self.dump('status = ' + self.status)
# test
ohmpi = OhmPi(config='ohmpi_param.json')
ohmpi.measure()
time.sleep(4)
ohmpi.stop()