sw.py 43.21 KiB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
from hwTest import Alimentation, Current, Voltage, Multiplexer

# -*- coding: utf-8 -*-
"""
created on January 6, 2020.
Updates dec 2022.
Hardware: Licensed under CERN-OHL-S v2 or any later version
Software: Licensed under the GNU General Public License v3.0
Ohmpi.py is a program to control a low-cost and open hardware resistivity meter OhmPi that has been developed by
Rémi CLEMENT (INRAE), Vivien DUBOIS (INRAE), Hélène GUYARD (IGE), Nicolas FORQUET (INRAE), Yannick FARGIER (IFSTTAR)
Olivier KAUFMANN (UMONS), Arnaud WATLET (UMONS) and Guillaume BLANCHY (FNRS/ULiege).
"""

import os
from utils import get_platform
import json
import warnings
from copy import deepcopy
import numpy as np
import csv
import time
import shutil
from datetime import datetime
from termcolor import colored
import threading
from logging_setup import setup_loggers
from config import MQTT_CONTROL_CONFIG, OHMPI_CONFIG, EXEC_LOGGING_CONFIG
from logging import DEBUG

# finish import (done only when class is instantiated as some libs are only available on arm64 platform)
try:
    from gpiozero import CPUTemperature  # noqa

    arm64_imports = True
except ImportError as error:
    if EXEC_LOGGING_CONFIG['logging_level'] == DEBUG:
        print(colored(f'Import error: {error}', 'yellow'))
    arm64_imports = False
except Exception as error:
    print(colored(f'Unexpected error: {error}', 'red'))
    arm64_imports = None

class OhmPi(object):
    """ OhmPi class.
    """

    def __init__(self, settings=None, sequence=None, use_mux=False, mqtt=True, onpi=None, idps=False):
        """Constructs the ohmpi object

        Parameters
        ----------
        settings:

        sequence:

        use_mux:
            if True use the multiplexor to select active electrodes
        mqtt: bool, defaut: True
            if True publish on mqtt topics while logging, otherwise use other loggers only
        onpi: bool,None default: None
            if None, the platform on which the class is instantiated is determined to set on_pi to either True or False.
            if False the behaviour of an ohmpi will be partially emulated and return random data.
        idps:
            if true uses the DPS
        """

        if onpi is None:
            _, onpi = get_platform()

        self._sequence = sequence
        self.nb_samples = 0
        self.use_mux = use_mux
        self.on_pi = onpi  # True if run from the RaspberryPi with the hardware, otherwise False for random data
        self.status = 'idle'  # either running or idle
        self.thread = None  # contains the handle for the thread taking the measurement

        # set loggers
        config_exec_logger, _, config_data_logger, _, _, msg = setup_loggers(mqtt=mqtt)  # TODO: add SOH
        self.data_logger = config_data_logger
        self.exec_logger = config_exec_logger
        self.soh_logger = None  # TODO: Implement the SOH logger
        print(msg)

        
        # read in hardware parameters (config.py)
        self._read_hardware_config()  # TODO should go to hw.py

        # default acquisition settings
        self.settings = {
            'injection_duration': 0.2,
            'nb_meas': 1,
            'sequence_delay': 1,
            'nb_stack': 1,
            'export_path': 'data/measurement.csv'
        }
        # read in acquisition settings
        if settings is not None:
            self.update_settings(settings)

        self.exec_logger.debug('Initialized with settings:' + str(self.settings))

        # read quadrupole sequence
        if sequence is not None:
            self.load_sequence(sequence)

        self.idps = idps  # flag to use dps for injection or not

        # connect to components on the OhmPi board
        if self.on_pi:
           # initialize hardware
            self.alim = Alimentation()
            self.voltage = Voltage()
            self.current = Current()
            self.mux = Multiplexer()

        # set controller
        self.mqtt = mqtt
        self.cmd_id = None
        if self.mqtt:
            import paho.mqtt.client as mqtt_client

            self.exec_logger.debug(f"Connecting to control topic {MQTT_CONTROL_CONFIG['ctrl_topic']}"
                                   f" on {MQTT_CONTROL_CONFIG['hostname']} broker")

            def connect_mqtt() -> mqtt_client:
                def on_connect(mqttclient, userdata, flags, rc):
                    if rc == 0:
                        self.exec_logger.debug(f"Successfully connected to control broker:"
                                               f" {MQTT_CONTROL_CONFIG['hostname']}")
                    else:
                        self.exec_logger.warning(f'Failed to connect to control broker. Return code : {rc}')

                client = mqtt_client.Client(f"ohmpi_{OHMPI_CONFIG['id']}_listener", clean_session=False)
                client.username_pw_set(MQTT_CONTROL_CONFIG['auth'].get('username'),
                                       MQTT_CONTROL_CONFIG['auth']['password'])
                client.on_connect = on_connect
                client.connect(MQTT_CONTROL_CONFIG['hostname'], MQTT_CONTROL_CONFIG['port'])
                return client

            try:
                self.exec_logger.debug(f"Connecting to control broker: {MQTT_CONTROL_CONFIG['hostname']}")
                self.controller = connect_mqtt()
            except Exception as e:
                self.exec_logger.debug(f'Unable to connect control broker: {e}')
                self.controller = None
            if self.controller is not None:
                self.exec_logger.debug(f"Subscribing to control topic {MQTT_CONTROL_CONFIG['ctrl_topic']}")
                try:
                    self.controller.subscribe(MQTT_CONTROL_CONFIG['ctrl_topic'], MQTT_CONTROL_CONFIG['qos'])

                    msg = f"Subscribed to control topic {MQTT_CONTROL_CONFIG['ctrl_topic']}" \
                          f" on {MQTT_CONTROL_CONFIG['hostname']} broker"
                    self.exec_logger.debug(msg)
                    print(colored(f'\u2611 {msg}', 'blue'))
                except Exception as e:
                    self.exec_logger.warning(f'Unable to subscribe to control topic : {e}')
                    self.controller = None
                publisher_config = MQTT_CONTROL_CONFIG.copy()
                publisher_config['topic'] = MQTT_CONTROL_CONFIG['ctrl_topic']
                publisher_config.pop('ctrl_topic')

                def on_message(client, userdata, message):
                    command = message.payload.decode('utf-8')
                    self.exec_logger.debug(f'Received command {command}')
                    self._process_commands(command)

                self.controller.on_message = on_message
            else:
                self.controller = None
                self.exec_logger.warning('No connection to control broker.'
                                         ' Use python/ipython to interact with OhmPi object...')

    @staticmethod
    def append_and_save(filename: str, last_measurement: dict, cmd_id=None):
        """Appends and saves the last measurement dict.

        Parameters
        ----------
        filename : str
            filename to save the last measurement dataframe
        last_measurement : dict
            Last measurement taken in the form of a python dictionary
        cmd_id : str, optional
            Unique command identifier
        """
        last_measurement = deepcopy(last_measurement)
        if 'fulldata' in last_measurement:
            d = last_measurement['fulldata']
            n = d.shape[0]
            if n > 1:
                idic = dict(zip(['i' + str(i) for i in range(n)], d[:, 0]))
                udic = dict(zip(['u' + str(i) for i in range(n)], d[:, 1]))
                tdic = dict(zip(['t' + str(i) for i in range(n)], d[:, 2]))
                last_measurement.update(idic)
                last_measurement.update(udic)
                last_measurement.update(tdic)
            last_measurement.pop('fulldata')

        if os.path.isfile(filename):
            # Load data file and append data to it
            with open(filename, 'a') as f:
                w = csv.DictWriter(f, last_measurement.keys())
                w.writerow(last_measurement)
                # last_measurement.to_csv(f, header=False)
        else:
            # create data file and add headers
            with open(filename, 'a') as f:
                w = csv.DictWriter(f, last_measurement.keys())
                w.writeheader()
                w.writerow(last_measurement)

    def _compute_tx_volt(self, best_tx_injtime=0.1, strategy='vmax', tx_volt=5):
        """Estimates best Tx voltage based on different strategies.
        At first a half-cycle is made for a short duration with a fixed
        known voltage. This gives us Iab and Rab. We also measure Vmn.
        A constant c = vmn/iab is computed (only depends on geometric
        factor and ground resistivity, that doesn't change during a
        quadrupole). Then depending on the strategy, we compute which
        vab to inject to reach the minimum/maximum Iab current or
        min/max Vmn.
        
        Parameters
        ----------
        best_tx_injtime : float, optional
            Time in milliseconds for the half-cycle used to compute Rab.
        strategy : str, optional
            Either:
            - vmin : compute Vab to reach a minimum Iab and Vmn
            - vmax : compute Vab to reach a maximum Iab and Vmn
            - constant : apply given Vab
        tx_volt : float, optional
            Voltage apply to try to guess the best voltage. 5 V applied
            by default. If strategy "constant" is chosen, constant voltage
            to applied is "tx_volt".

        Returns
        -------
        vab : float
            Proposed Vab according to the given strategy.
        """

        # hardware limits
        voltage_min = self.voltage.vmin  # V
        voltage_max = self.voltage.vmax
        current_min = self.current.imin  # A
        current_max = self.current.imax
        tx_max = 40.  # volt

        # check of V
        volt = tx_volt
        if volt > tx_max:
            self.exec_logger.warning('Sorry, cannot inject more than 40 V, set it back to 5 V')
            volt = 5.

        # make sure we are not injecting
        self.alim.stop_injection()

        # select a polarity to start with
        self.alim.set_polarity(True)

        # set voltage for test
        self.alim.turn_on()
        self.alim.set_tx_voltage(volt)
        time.sleep(best_tx_injtime)  # inject for given tx time
        self.alim.start_injection()

        # autogain: set best gain
        self.current.set_best_gain()
        self.voltage.set_best_gain()

        # we measure the voltage on both A0 and A2 to guess the polarity
        values = self.read_values(duration=0.1)
        self.alim.stop_injection()
        iab = values[-1, 1]
        vmn = values[-1, 2]

        # compute constant
        c = vmn / iab
        Rab = (volt * 1000.) / iab  # noqa
        self.exec_logger.debug(f'Rab = {Rab:.2f} Ohms')

        # implement different strategies
        if strategy == 'vmax':
            vmn_max = c * current_max
            if voltage_max > vmn_max > voltage_min:
                vab = current_max * Rab
                self.exec_logger.debug('target max current')
            else:
                iab = voltage_max / c
                vab = iab * Rab
                self.exec_logger.debug('target max voltage')
            if vab > 25.:
                vab = 25.
            vab = vab * 0.9

        elif strategy == 'vmin':
            vmn_min = c * current_min
            if voltage_min < vmn_min < voltage_max:
                vab = current_min * Rab
                self.exec_logger.debug('target min current')
            else:
                iab = voltage_min / c
                vab = iab * Rab
                self.exec_logger.debug('target min voltage')
            if vab < 1.:
                vab = 1.
            vab = vab * 1.1

        elif strategy == 'constant':
            vab = volt
        else:
            vab = 5

        return vab

    def get_data(self, survey_names=None, cmd_id=None):
        """Get available data.
        
        Parameters
        ----------
        survey_names : list of str, optional
            List of filenames already available from the html interface. So
            their content won't be returned again. Only files not in the list
            will be read.
        cmd_id : str, optional
            Unique command identifier
        """
        # get all .csv file in data folder
        if survey_names is None:
            survey_names = []
        fnames = [fname for fname in os.listdir('data/') if fname[-4:] == '.csv']
        ddic = {}
        if cmd_id is None:
            cmd_id = 'unknown'
        for fname in fnames:
            if ((fname != 'readme.txt')
                    and ('_rs' not in fname)
                    and (fname.replace('.csv', '') not in survey_names)):
                try:
                    data = np.loadtxt('data/' + fname, delimiter=',',
                                      skiprows=1, usecols=(1, 2, 3, 4, 8))
                    data = data[None, :] if len(data.shape) == 1 else data
                    ddic[fname.replace('.csv', '')] = {
                        'a': data[:, 0].astype(int).tolist(),
                        'b': data[:, 1].astype(int).tolist(),
                        'm': data[:, 2].astype(int).tolist(),
                        'n': data[:, 3].astype(int).tolist(),
                        'rho': data[:, 4].tolist(),
                    }
                except Exception as e:
                    print(fname, ':', e)
        rdic = {'cmd_id': cmd_id, 'data': ddic}
        self.data_logger.info(json.dumps(rdic))
        return ddic

    def interrupt(self, cmd_id=None):
        """Interrupts the acquisition when launched in async mode.

        Parameters
        ----------
        cmd_id : str, optional
            Unique command identifier
        """
        self.status = 'stopping'
        if self.thread is not None:
            self.thread.join()
            self.exec_logger.debug('Interrupted sequence acquisition...')
        else:
            self.exec_logger.debug('No sequence measurement thread to interrupt.')
        self.exec_logger.debug(f'Status: {self.status}')

    def load_sequence(self, filename: str, cmd_id=None):
        """Reads quadrupole sequence from file.

        Parameters
        ----------
        filename : str
            Path of the .csv or .txt file with A, B, M and N electrodes.
            Electrode index start at 1.
        cmd_id : str, optional
            Unique command identifier

        Returns
        -------
        sequence : numpy.array
            Array of shape (number quadrupoles * 4).
        """
        self.exec_logger.debug(f'Loading sequence {filename}')
        try:
            sequence = np.loadtxt(filename, delimiter=" ", dtype=np.uint32)  # load quadrupole file
            self.exec_logger.debug(f'Sequence of {sequence.shape[0]:d} quadrupoles read.')
            self.set_sequence(sequence)
        except Exception as e:
            self.exec_logger.debug('ERROR in load_sequence(): ' + str(e))

        if sequence is not None:
            self.exec_logger.info(f'Sequence {filename} of {sequence.shape[0]:d} quadrupoles loaded.')
        else:
            self.exec_logger.warning(f'Unable to load sequence {filename}')

    def set_sequence(self, sequence):
        """Set a sequence of quadrupoles.
        
        Parameters
        ----------
        sequence : list of list or np.array
            2D array with 1 row per quadrupole.
        """
        # locate lines where the electrode index exceeds the maximum number of electrodes
        test_index_elec = np.array(np.where(sequence > self.max_elec))

        # reshape in case we have a 1D array (=1 quadrupole)
        if len(sequence.shape) == 1:
            sequence = sequence[None, :]
            
        # test for elec A == B
        test_same_elec = np.where(sequence[:, 0] == sequence[:, 1])[0]
        ok = True
        
        # if statement with exit cases (TODO rajouter un else if pour le deuxième cas du ticket #2)
        if test_index_elec.size != 0:
            for i in range(len(test_index_elec[0, :])):
                ok = False
                self.exec_logger.error(f'An electrode index at line {str(test_index_elec[0, i] + 1)} '
                                       f'exceeds the maximum number of electrodes')
            # sys.exit(1)
            sequence = None
        if len(test_same_elec) != 0:
            for i in range(len(test_same_elec)):
                ok = False
                self.exec_logger.error(f'An electrode index A == B detected at line {str(test_same_elec[i] + 1)}')
            # sys.exit(1)
            sequence = None

        # set sequence attribute
        if ok:
            self.sequence = sequence
        else:
            self.exec_logger.error('Unable to set sequence. Fix sequence first.')


    def _process_commands(self, message: str):
        """Processes commands received from the controller(s)

        Parameters
        ----------
        message : str
            message containing a command and arguments or keywords and arguments
        """
        status = False
        cmd_id = '?'
        try:
            decoded_message = json.loads(message)
            self.exec_logger.debug(f'Decoded message {decoded_message}')
            cmd_id = decoded_message.pop('cmd_id', None)
            cmd = decoded_message.pop('cmd', None)
            kwargs = decoded_message.pop('kwargs', None)
            self.exec_logger.debug(f"Calling method {cmd}({str(kwargs) if kwargs is not None else ''})")
            if cmd_id is None:
                self.exec_logger.warning('You should use a unique identifier for cmd_id')
            if cmd is not None:
                try:
                    if kwargs is None:
                        output = getattr(self, cmd)()
                    else:
                        output = getattr(self, cmd)(**kwargs)
                    status = True
                except Exception as e:
                    self.exec_logger.error(
                        f"Unable to execute {cmd}({str(kwargs) if kwargs is not None else ''}): {e}")
                    status = False
        except Exception as e:
            self.exec_logger.warning(f'Unable to decode command {message}: {e}')
            status = False
        finally:
            reply = {'cmd_id': cmd_id, 'status': status}
            reply = json.dumps(reply)
            self.exec_logger.debug(f'Execution report: {reply}')

    def quit(self, cmd_id=None):
        """Quits OhmPi

        Parameters
        ----------
        cmd_id : str, optional
            Unique command identifier
        """
        self.exec_logger.debug(f'Quitting ohmpi.py following command {cmd_id}')
        exit()

    def _read_hardware_config(self):
        """Reads hardware configuration from config.py
        """
        self.exec_logger.debug('Getting hardware config')
        self.id = OHMPI_CONFIG['id']  # ID of the OhmPi
        self.Imax = OHMPI_CONFIG['Imax']  # maximum current
        self.exec_logger.debug(f'The maximum current cannot be higher than {self.Imax} mA')
        self.coef_p2 = OHMPI_CONFIG['coef_p2']  # slope for current conversion for ads.P2, measurement in V/V
        self.nb_samples = OHMPI_CONFIG['nb_samples']  # number of samples measured for each stack
        self.version = OHMPI_CONFIG['version']  # hardware version
        self.max_elec = OHMPI_CONFIG['max_elec']  # maximum number of electrodes
        self.board_version = OHMPI_CONFIG['board_version']
        self.exec_logger.debug(f'OHMPI_CONFIG = {str(OHMPI_CONFIG)}')

    def remove_data(self, cmd_id=None):
        """Remove all data in the data folder

        Parameters
        ----------
        cmd_id : str, optional
            Unique command identifier
        """
        self.exec_logger.debug(f'Removing all data following command {cmd_id}')
        shutil.rmtree('data')
        os.mkdir('data')

    def restart(self, cmd_id=None):
        """Restarts the Raspberry Pi

        Parameters
        ----------
        cmd_id : str, optional
            Unique command identifier
        """

        if self.on_pi:
            self.exec_logger.info(f'Restarting pi following command {cmd_id}...')
            os.system('reboot')
        else:
            self.exec_logger.warning('Not on Raspberry Pi, skipping reboot...')

    def set_best_gain(self):
        """Set best gain."""
        self.current.set_best_gain()
        gain0 = self.voltage.get_best_gain(channel=0)
        gain2 = self.voltage.get_best_gain(channel=2)
        self.voltage.set_gain(np.min([gain0, gain2]))

    def read_values(self, duration=0.2, sampling=0.01):
        """Read voltage during a given time for current and voltage ADS.
        
        Parameters
        ----------
        duration : int, optional
            Time in seconds to monitor the voltage.
        sampling : int, optional
            Time between two samples in seconds.

        Returns
        -------
        meas : numpy.array
            Array with first column time in ms from start,
            second column, current in mA, then voltage in mV
            from the different channels.
        """        
        # compute maximum number of samples possible
        # we probably harvest less samples but like this
        # we can already allocated the array and that makes
        # the collection faster
        nsamples = int((int(duration * 1000) // sampling) + 1)

        # measurement of current i and voltage u during injection
        nchannel = len(self.voltage.read_all())
        meas = np.zeros((nsamples, 2 + nchannel)) * np.nan
        start_time = time.time()  # stating measurement time
        elapsed = 0
        for i in range(0, nsamples):
            # reading current value on ADS channels
            elapsed = time.time() - start_time  # real injection time (s)
            if elapsed >= (duration):
                break
            meas[i, 0] = elapsed
            meas[i, 1] = self.current.read()
            meas[i, 2:] = self.voltage.read_all()
            time.sleep(sampling)
        
        return meas[:i-1, :]


    def run_measurement(self, quad=[0, 0, 0, 0], nb_stack=None, injection_duration=None,
                        autogain=True, strategy='constant', tx_volt=5, best_tx_injtime=0.1,
                        duty=1, cmd_id=None):
        """Measures on a quadrupole and returns transfer resistance.

        Parameters
        ----------
        quad : iterable (list of int)
            Quadrupole to measure, just for labelling. Only switch_mux_on/off
            really creates the route to the electrodes.
        nb_stack : int, optional
            Number of stacks. A stacl is considered two half-cycles (one
            positive, one negative).
        injection_duration : int, optional
            Injection time in seconds.
        autogain : bool, optional
            If True, will adapt the gain of the ADS1115 to maximize the
            resolution of the reading.
        strategy : str, optional
            (V3.0 only) If we search for best voltage (tx_volt == 0), we can choose
            different strategy:
            - vmin: find the lowest voltage that gives us a signal
            - vmax: find the highest voltage that stays in the range
            For a constant value, just set the tx_volt.
        tx_volt : float, optional
            (V3.0 only) If specified, voltage will be imposed. If 0, we will look
            for the best voltage. If the best Tx cannot be found, no
            measurement will be taken and values will be NaN.
        best_tx_injtime : float, optional
            (V3.0 only) Injection time in seconds used for finding the best voltage.
        duty : float, optional
            Proportion of time spent on injection vs no injection time.
        cmd_id : str, optional
            Command ID.
        """
        self.exec_logger.debug('Starting measurement')

        if nb_stack is None:
            nb_stack = self.settings['nb_stack']
        if injection_duration is None:
            injection_duration = self.settings['injection_duration']
        tx_volt = float(tx_volt)

        # let's define the pin again as if we run through measure()
        # as it's run in another thread, it doesn't consider these
        # and this can lead to short circuit!
        self.alim = Alimentation()  # TODO carefully test that
        self.alim.stop_injection()

        # get best voltage to inject AND polarity
        if self.idps:
            tx_volt, polarity = self._compute_tx_volt(
                best_tx_injtime=best_tx_injtime, strategy=strategy, tx_volt=tx_volt)
            self.exec_logger.debug(f'Best vab found is {tx_volt:.3f}V')

        # first reset the gain to 2/3 before trying to find best gain (mode 0 is continuous)
        self.current.set_gain(2/3)
        self.voltage.set_gain(2/3)

        # turn on the power supply
        if self.alim.on == False:
            self.alim.turn_on()
        self.alim.set_tx_voltage(tx_volt)
        time.sleep(0.05)  # let it time to reach tx_volt
        
        if tx_volt > 0:  # we found a Vab in the range so we measure
            # find best gain during injection
            if autogain:
                self.alim.start_injection()
                time.sleep(injection_duration)
                self.set_best_gain()
                self.alim.stop_injection()

            # make sure we are not injecting
            self.alim.stop_injection()

            # full data for waveform
            fulldata = []

            # we sample every 10 ms (as using AnalogIn for both current
            # and voltage takes about 7 ms). When we go over the injection
            # duration, we break the loop and truncate the meas arrays
            # only the last values in meas will be taken into account
            start_delay = time.time()
            injtimes = np.zeros(nb_stack * 2)
            for n in range(0, nb_stack * 2):  # for each half-cycles                    
                # current injection polarity
                if (n % 2) == 0:
                    self.alim.set_polarity(True)
                else:
                    self.alim.set_polarity(False)
                self.alim.start_injection()
                
                # reading voltages and currents
                elapsed = time.time() - start_delay
                values = self.read_values(duration=injection_duration)
                injtimes[n] = values[-1, 0]
                values[:, 0] += elapsed
                fulldata.append(values)

                # stop current injection
                self.alim.stop_injection()

                # waiting time (no injection) before next half-cycle
                if duty < 1:
                    duration = injection_duration * (1 - duty)
                    elapsed = time.time() - start_delay
                    values = self.read_values(duration=duration)
                    values[:, 0] += elapsed
                    fulldata.append(values)
                else:
                    fulldata.append(np.array([[], [], [], []]).T)
            
            # TODO get battery voltage and warn if battery is running low
            # TODO send a message on SOH stating the battery level

            # let's do some calculation (out of the stacking loop)
            stacks = np.zeros((len(fulldata) // 2, fulldata[0].shape[1]-1))
            
            # define number of sample to average for the injection half-cycle
            n2avg = int(fulldata[0].shape[0] // 3)

            # compute average for the injection half-cycle
            for n, meas in enumerate(fulldata[::2]):
                stacks[n, :] = np.mean(meas[-n2avg:, 1:], axis=0)

            # identify which of U0 or U2 is on top
            a = 1
            b = 0
            if stacks[0, 1] > stacks[0, 2]:
                a = 0
                b = 1

            # compute average vmn and i
            iab = np.mean(stacks[:, 1])
            vmn = np.mean(stacks[a::2, 1] + stacks[b::2, 2])
            
            # self-potential estimated during on-time
            spon = np.mean(stacks[a::2, 1] - stacks[b::2, 2])

            # remove the average sp computed on injection half-cycle
            vmn = vmn - spon
            
            # compute average self potential between injection half-cycle
            if duty < 1:
                spoff = 0
                n2avg = int(fulldata[0].shape[0] // 3)
                for n, meas in enumerate(fulldata[1::2]):
                    spoff += np.mean(meas[-n2avg:, 2])
                spoff  = spoff / len(fulldata) * 2
        else:
            iab = np.nan
            vmn = np.nan
            spon = np.nan
            fulldata = None

        # set a low voltage for safety
        self.alim.set_tx_voltage(12)

        # reshape full data to an array of good size
        # we need an array of regular size to save in the csv
        if tx_volt > 0:  # TODO what if have different array size?
            for a in fulldata:
                print(a.shape)
            fulldata = np.vstack(fulldata)
            # we create a big enough array given nb_samples, number of
            # half-cycles (1 stack = 2 half-cycles), and twice as we
            # measure decay as well
            nsamples = int((int(injection_duration * 1000) / duty) // 0.01 + 1)
            a = np.zeros((nb_stack * nsamples * 2, fulldata.shape[1])) * np.nan
            a[:fulldata.shape[0], :] = fulldata
            fulldata = a

        # create a dictionary and compute averaged values from all stacks
        d = {
            "time": datetime.now().isoformat(),
            "A": quad[0],
            "B": quad[1],
            "M": quad[2],
            "N": quad[3],
            "injtime [ms]": np.mean(injtimes),
            "Vmn [mV]": vmn,
            "I [mA]": iab,
            "R [ohm]": vmn/iab,
            "Ps [mV]": spon,
            "nbStack": nb_stack,
            "tmp [degC]": CPUTemperature().temperature if arm64_imports else -10,
            "Nb samples [-]": n2avg,
            "stacks": stacks,
            "fulldata": fulldata,
        }

        # to the data logger
        dd = d.copy()
        dd.pop('fulldata')  # too much for logger
        dd.update({'A': str(dd['A'])})
        dd.update({'B': str(dd['B'])})
        dd.update({'M': str(dd['M'])})
        dd.update({'N': str(dd['N'])})

        # round float to 2 decimal
        for key in dd.keys():
            if isinstance(dd[key], float):
                dd[key] = np.round(dd[key], 3)

        dd['cmd_id'] = str(cmd_id)
        self.data_logger.info(dd)

        return d
    
    def run_sequence(self, cmd_id=None, **kwargs):
        """Runs sequence synchronously (=blocking on main thread).
           Additional arguments are passed to run_measurement().

        Parameters
        ----------
        cmd_id : str, optional
            Unique command identifier.
        kwargs : optional
            Optional keyword arguments passed to run_measurement().
            See help(OhmPi.run_measurement).
        """
        self.status = 'running'
        self.exec_logger.debug(f'Status: {self.status}')
        self.exec_logger.debug(f'Measuring sequence: {self.sequence}')

        # create filename with timestamp
        filename = self.settings["export_path"].replace('.csv',
                                                        f'_{datetime.now().strftime("%Y%m%dT%H%M%S")}.csv')
        self.exec_logger.debug(f'Saving to {filename}')

        # make sure all multiplexer are off
        self.mux.reset()

        # measure all quadrupole of the sequence
        if self.sequence is None:
            seq = np.array([[0, 0, 0, 0]])
        else:
            seq = self.sequence.copy()
        for i in range(0, seq.shape[0]):
            quad = seq[i, :]
            if self.status == 'stopping':
                break

            # call the switch_mux function to switch to the right electrodes
            self.switch_mux_on(quad)

            # run a measurement
            acquired_data = self.run_measurement(quad, **kwargs)
            self.data_logger.info(acquired_data)

            # switch mux off
            self.switch_mux_off(quad)

            # add command_id in dataset
            acquired_data.update({'cmd_id': cmd_id})

            # log data to the data logger
            # self.data_logger.info(f'{acquired_data}')
            # save data and print in a text file
            self.append_and_save(filename, acquired_data)
            self.exec_logger.debug(f'quadrupole {i + 1:d}/{seq.shape[0]:d}')

        self.status = 'idle'

    def run_sequence_async(self, cmd_id=None, **kwargs):
        """Runs the sequence in a separate thread. Can be stopped by 'OhmPi.interrupt()'.
            Additional arguments are passed to run_measurement().

        Parameters
        ----------
        cmd_id : str, optional
            Unique command identifier
        """
        def func():
            self.run_sequence(**kwargs)

        self.thread = threading.Thread(target=func)
        self.thread.start()
        self.status = 'idle'

    def run_multiple_sequences(self, sequence_delay=None, nb_meas=None, cmd_id=None, **kwargs):
        """Runs multiple sequences in a separate thread for monitoring mode.
           Can be stopped by 'OhmPi.interrupt()'.
           Additional arguments are passed to run_measurement().

        Parameters
        ----------
        cmd_id : str, optional
            Unique command identifier
        sequence_delay : int, optional
            Number of seconds at which the sequence must be started from each others.
        nb_meas : int, optional
            Number of time the sequence must be repeated.
        kwargs : dict, optional
            See help(k.run_measurement) for more info.
        """
        # self.run = True
        if sequence_delay is None:
            sequence_delay = self.settings['sequence_delay']
        sequence_delay = int(sequence_delay)
        if nb_meas is None:
            nb_meas = self.settings['nb_meas']
        self.status = 'running'
        self.exec_logger.debug(f'Status: {self.status}')
        self.exec_logger.debug(f'Measuring sequence: {self.sequence}')

        def func():
            for g in range(0, nb_meas):  # for time-lapse monitoring
                if self.status == 'stopping':
                    self.exec_logger.warning('Data acquisition interrupted')
                    break
                t0 = time.time()
                self.run_sequence(**kwargs)

                # sleeping time between sequence
                dt = sequence_delay - (time.time() - t0)
                if dt < 0:
                    dt = 0
                if nb_meas > 1:
                    time.sleep(dt)  # waiting for next measurement (time-lapse)
            self.status = 'idle'

        self.thread = threading.Thread(target=func)
        self.thread.start()

    def _quad2qdic(self, quad):
        """Convert a quadrupole to a more flexible qdic
        of format {'A': [1], 'B': [2], 'M': [3], 'N': [4]}.
        This format enable to inject at several electrodes and
        is more flexible for multichannelling (we can add M1, N1, ...).
        
        Parameters
        ----------
        quad : list of int,
            List of quadrupoles. Electrodes equal to 0 are ignored.

        Returns
        -------
            Dictionnary in the form: {role: [list of electrodes]}.
        """
        return dict(zip(['A', 'B', 'M', 'N'], [[a] for a in quad if a > 0]))

    def switch_mux_on(self, quad):
        """"Switch quadrupoles on.
        
        Parameters
        ----------
        quad : list of int,
            List of quadrupoles. Electrodes equal to 0 are ignored.
        """
        qdic = self._quad2qdic(quad)
        self.mux.switch(qdic, 'on')

    def switch_mux_off(self, quad):
        """Switch quadrupoles off.
        
        Parameters
        ----------
        quad : list of int,
            List of quadrupoles. Electrodes equal to 0 are ignored.
        """
        qdic = self._quad2qdic(quad)
        self.mux.switch(qdic, 'off')

    def reset_mux(self):
        """Reset the mux, make sure all relays are off.
        """
        self.mux.reset()

    def rs_check(self, tx_volt=12., cmd_id=None):
        """Checks contact resistances.

        Parameters
        ----------
        tx_volt : float, optional
            Voltage of the injection.
        cmd_id : str, optional
            Unique command identifier.
        """
        # create custom sequence where MN == AB
        # we only check the electrodes which are in the sequence (not all might be connected)
        if self.sequence is None:
            quads = np.array([[1, 2, 0, 0]], dtype=np.uint32)
        else:
            elec = np.sort(np.unique(self.sequence.flatten()))  # assumed order
            quads = np.vstack([
                elec[:-1],
                elec[1:],
                np.zeros(len(elec)-1),
                np.zeros(len(elec)-1)
            ]).T

        # create filename to store RS
        export_path_rs = self.settings['export_path'].replace('.csv', '') \
                         + '_' + datetime.now().strftime('%Y%m%dT%H%M%S') + '_rs.csv'

        # perform RS check
        self.status = 'running'

        # make sure all mux are off to start with
        self.mux.reset()

        # turn on alim
        self.alim.turn_on()
        self.alim.set_tx_voltage(tx_volt)

        # measure all quad of the RS sequence
        for i in range(0, quads.shape[0]):
            quad = quads[i, :]  # quadrupole
            self.switch_mux_on(quad)  # put before raising the pins (otherwise conflict i2c)
            d = self.run_measurement(
                quad=quad, nb_stack=1, injection_duration=0.2,
                tx_volt=tx_volt, autogain=False)
            self.switch_mux_off(quad)

            voltage = d['Tx [V]']
            current = d['I [mA]'] / 1000.

            # compute resistance measured (= contact resistance)
            resist = abs(voltage / current) / 1000.
            # print(str(quad) + '> I: {:>10.3f} mA, V: {:>10.3f} mV, R: {:>10.3f} kOhm'.format(
            #    current, voltage, resist))
            msg = f'Contact resistance {str(quad):s}: I: {current * 1000.:>10.3f} mA, ' \
                    f'V: {voltage :>10.3f} mV, ' \
                    f'R: {resist :>10.3f} kOhm'

            self.exec_logger.debug(msg)

            # if contact resistance = 0 -> we have a short circuit!!
            if resist < 1e-5:
                msg = f'!!!SHORT CIRCUIT!!! {str(quad):s}: {resist:.3f} kOhm'
                self.exec_logger.warning(msg)

            # save data in a text file
            self.append_and_save(export_path_rs, {
                'A': quad[0],
                'B': quad[1],
                'RS [kOhm]': resist,
            })
        
        self.alim.turn_off()
        self.status = 'idle'

    def update_settings(self, settings: str, cmd_id=None):
        """Updates acquisition settings from a json file or dictionary.
        Parameters can be:
            - nb_electrodes (number of electrode used, if 4, no MUX needed)
            - injection_duration (in seconds)
            - nb_meas (total number of times the sequence will be run)
            - sequence_delay (delay in second between each sequence run)
            - nb_stack (number of stack for each quadrupole measurement)
            - export_path (path where to export the data, timestamp will be added to filename)

        Parameters
        ----------
        settings : str, dict
            Path to the .json settings file or dictionary of settings.
        cmd_id : str, optional
            Unique command identifier
        """
        status = False
        if settings is not None:
            try:
                if isinstance(settings, dict):
                    self.settings.update(settings)
                else:
                    with open(settings) as json_file:
                        dic = json.load(json_file)
                    self.settings.update(dic)
                self.exec_logger.debug('Acquisition parameters updated: ' + str(self.settings))
                status = True
            except Exception as e:  # noqa
                self.exec_logger.warning('Unable to update settings.')
                status = False
        else:
            self.exec_logger.warning('Settings are missing...')
        return status
    
    def stop(self, **kwargs):
        warnings.warn('This function is deprecated. Use interrupt instead.', DeprecationWarning)
        self.interrupt(**kwargs)

    def _update_acquisition_settings(self, config):
        warnings.warn('This function is deprecated, use update_settings() instead.', DeprecationWarning)
        self.update_settings(settings=config)

    # Properties
    @property
    def sequence(self):
        """Gets sequence"""
        if self._sequence is not None:
            assert isinstance(self._sequence, np.ndarray)
        return self._sequence

    # TODO not sure if the below is still needed now we have a 
    # method set_sequence()
    @sequence.setter
    def sequence(self, sequence):
        """Sets sequence"""
        if sequence is not None:
            assert isinstance(sequence, np.ndarray)
            self.use_mux = True
        else:
            self.use_mux = False
        self._sequence = sequence


VERSION = '3.0.0'

print(colored(r' ________________________________' + '\n' +
              r'|  _  | | | ||  \/  || ___ \_   _|' + '\n' +
              r'| | | | |_| || .  . || |_/ / | |' + '\n' +
              r'| | | |  _  || |\/| ||  __/  | |' + '\n' +
              r'\ \_/ / | | || |  | || |    _| |_' + '\n' +
              r' \___/\_| |_/\_|  |_/\_|    \___/ ', 'red'))
print('Version:', VERSION)
platform, on_pi = get_platform()

if on_pi:
    print(colored(f'\u2611 Running on {platform} platform', 'green'))
    # TODO: check model for compatible platforms (exclude Raspberry Pi versions that are not supported...)
    #       and emit a warning otherwise
    if not arm64_imports:
        print(colored(f'Warning: Required packages are missing.\n'
                      f'Please run ./env.sh at command prompt to update your virtual environment\n', 'yellow'))
else:
    print(colored(f'\u26A0 Not running on the Raspberry Pi platform.\nFor simulation purposes only...', 'yellow'))

current_time = datetime.now()
print(f'local date and time : {current_time.strftime("%Y-%m-%d %H:%M:%S")}')

# for testing
if __name__ == "__main__":
    ohmpi = OhmPi(settings=OHMPI_CONFIG['settings'])
    if ohmpi.controller is not None:
        ohmpi.controller.loop_forever()