An error occurred while loading the file. Please try again.
-
Guillaume Blanchy authoredce3939f7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
from hwTest import Alimentation, Current, Voltage, Multiplexer
# -*- coding: utf-8 -*-
"""
created on January 6, 2020.
Updates dec 2022.
Hardware: Licensed under CERN-OHL-S v2 or any later version
Software: Licensed under the GNU General Public License v3.0
Ohmpi.py is a program to control a low-cost and open hardware resistivity meter OhmPi that has been developed by
Rémi CLEMENT (INRAE), Vivien DUBOIS (INRAE), Hélène GUYARD (IGE), Nicolas FORQUET (INRAE), Yannick FARGIER (IFSTTAR)
Olivier KAUFMANN (UMONS), Arnaud WATLET (UMONS) and Guillaume BLANCHY (FNRS/ULiege).
"""
import os
from utils import get_platform
import json
import warnings
from copy import deepcopy
import numpy as np
import csv
import time
import shutil
from datetime import datetime
from termcolor import colored
import threading
from logging_setup import setup_loggers
from config import MQTT_CONTROL_CONFIG, OHMPI_CONFIG, EXEC_LOGGING_CONFIG
from logging import DEBUG
# finish import (done only when class is instantiated as some libs are only available on arm64 platform)
try:
from gpiozero import CPUTemperature # noqa
arm64_imports = True
except ImportError as error:
if EXEC_LOGGING_CONFIG['logging_level'] == DEBUG:
print(colored(f'Import error: {error}', 'yellow'))
arm64_imports = False
except Exception as error:
print(colored(f'Unexpected error: {error}', 'red'))
arm64_imports = None
class OhmPi(object):
""" OhmPi class.
"""
def __init__(self, settings=None, sequence=None, use_mux=False, mqtt=True, onpi=None, idps=False):
"""Constructs the ohmpi object
Parameters
----------
settings:
sequence:
use_mux:
if True use the multiplexor to select active electrodes
mqtt: bool, defaut: True
if True publish on mqtt topics while logging, otherwise use other loggers only
onpi: bool,None default: None
if None, the platform on which the class is instantiated is determined to set on_pi to either True or False.
if False the behaviour of an ohmpi will be partially emulated and return random data.
idps:
if true uses the DPS
"""
if onpi is None:
_, onpi = get_platform()
self._sequence = sequence
self.nb_samples = 0
self.use_mux = use_mux
self.on_pi = onpi # True if run from the RaspberryPi with the hardware, otherwise False for random data
self.status = 'idle' # either running or idle
self.thread = None # contains the handle for the thread taking the measurement
# set loggers
config_exec_logger, _, config_data_logger, _, _, msg = setup_loggers(mqtt=mqtt) # TODO: add SOH
self.data_logger = config_data_logger
self.exec_logger = config_exec_logger
self.soh_logger = None # TODO: Implement the SOH logger
print(msg)
# read in hardware parameters (config.py)
self._read_hardware_config() # TODO should go to hw.py
# default acquisition settings
self.settings = {
'injection_duration': 0.2,
'nb_meas': 1,
'sequence_delay': 1,
'nb_stack': 1,
'export_path': 'data/measurement.csv'
}
# read in acquisition settings
if settings is not None:
self.update_settings(settings)
self.exec_logger.debug('Initialized with settings:' + str(self.settings))
# read quadrupole sequence
if sequence is not None:
self.load_sequence(sequence)
self.idps = idps # flag to use dps for injection or not
# connect to components on the OhmPi board
if self.on_pi:
# initialize hardware
self.alim = Alimentation()
self.voltage = Voltage()
self.current = Current()
self.mux = Multiplexer()
# set controller
self.mqtt = mqtt
self.cmd_id = None
if self.mqtt:
import paho.mqtt.client as mqtt_client
self.exec_logger.debug(f"Connecting to control topic {MQTT_CONTROL_CONFIG['ctrl_topic']}"
f" on {MQTT_CONTROL_CONFIG['hostname']} broker")
def connect_mqtt() -> mqtt_client:
def on_connect(mqttclient, userdata, flags, rc):
if rc == 0:
self.exec_logger.debug(f"Successfully connected to control broker:"
f" {MQTT_CONTROL_CONFIG['hostname']}")
else:
self.exec_logger.warning(f'Failed to connect to control broker. Return code : {rc}')
client = mqtt_client.Client(f"ohmpi_{OHMPI_CONFIG['id']}_listener", clean_session=False)
client.username_pw_set(MQTT_CONTROL_CONFIG['auth'].get('username'),
MQTT_CONTROL_CONFIG['auth']['password'])
client.on_connect = on_connect
client.connect(MQTT_CONTROL_CONFIG['hostname'], MQTT_CONTROL_CONFIG['port'])
return client
try:
self.exec_logger.debug(f"Connecting to control broker: {MQTT_CONTROL_CONFIG['hostname']}")
self.controller = connect_mqtt()
except Exception as e:
self.exec_logger.debug(f'Unable to connect control broker: {e}')
self.controller = None
if self.controller is not None:
self.exec_logger.debug(f"Subscribing to control topic {MQTT_CONTROL_CONFIG['ctrl_topic']}")
try:
self.controller.subscribe(MQTT_CONTROL_CONFIG['ctrl_topic'], MQTT_CONTROL_CONFIG['qos'])
msg = f"Subscribed to control topic {MQTT_CONTROL_CONFIG['ctrl_topic']}" \
f" on {MQTT_CONTROL_CONFIG['hostname']} broker"
self.exec_logger.debug(msg)
print(colored(f'\u2611 {msg}', 'blue'))
except Exception as e:
self.exec_logger.warning(f'Unable to subscribe to control topic : {e}')
self.controller = None
publisher_config = MQTT_CONTROL_CONFIG.copy()
publisher_config['topic'] = MQTT_CONTROL_CONFIG['ctrl_topic']
publisher_config.pop('ctrl_topic')
def on_message(client, userdata, message):
command = message.payload.decode('utf-8')
self.exec_logger.debug(f'Received command {command}')
self._process_commands(command)
self.controller.on_message = on_message
else:
self.controller = None
self.exec_logger.warning('No connection to control broker.'
' Use python/ipython to interact with OhmPi object...')
@staticmethod
def append_and_save(filename: str, last_measurement: dict, cmd_id=None):
"""Appends and saves the last measurement dict.
Parameters
----------
filename : str
filename to save the last measurement dataframe
last_measurement : dict
Last measurement taken in the form of a python dictionary
cmd_id : str, optional
Unique command identifier
"""
last_measurement = deepcopy(last_measurement)
if 'fulldata' in last_measurement:
d = last_measurement['fulldata']
n = d.shape[0]
if n > 1:
idic = dict(zip(['i' + str(i) for i in range(n)], d[:, 0]))
udic = dict(zip(['u' + str(i) for i in range(n)], d[:, 1]))
tdic = dict(zip(['t' + str(i) for i in range(n)], d[:, 2]))
last_measurement.update(idic)
last_measurement.update(udic)
last_measurement.update(tdic)
last_measurement.pop('fulldata')
if os.path.isfile(filename):
# Load data file and append data to it
with open(filename, 'a') as f:
w = csv.DictWriter(f, last_measurement.keys())
w.writerow(last_measurement)
# last_measurement.to_csv(f, header=False)
else:
# create data file and add headers
with open(filename, 'a') as f:
w = csv.DictWriter(f, last_measurement.keys())
w.writeheader()
w.writerow(last_measurement)
def _compute_tx_volt(self, best_tx_injtime=0.1, strategy='vmax', tx_volt=5):
"""Estimates best Tx voltage based on different strategies.
At first a half-cycle is made for a short duration with a fixed
known voltage. This gives us Iab and Rab. We also measure Vmn.
A constant c = vmn/iab is computed (only depends on geometric
factor and ground resistivity, that doesn't change during a
quadrupole). Then depending on the strategy, we compute which
vab to inject to reach the minimum/maximum Iab current or
min/max Vmn.
Parameters
----------
best_tx_injtime : float, optional
Time in milliseconds for the half-cycle used to compute Rab.
strategy : str, optional
Either:
- vmin : compute Vab to reach a minimum Iab and Vmn
- vmax : compute Vab to reach a maximum Iab and Vmn
- constant : apply given Vab
tx_volt : float, optional
Voltage apply to try to guess the best voltage. 5 V applied
by default. If strategy "constant" is chosen, constant voltage
to applied is "tx_volt".
Returns
-------
vab : float
Proposed Vab according to the given strategy.
"""
# hardware limits
voltage_min = self.voltage.vmin # V
voltage_max = self.voltage.vmax
current_min = self.current.imin # A
current_max = self.current.imax
tx_max = 40. # volt
# check of V
volt = tx_volt
if volt > tx_max:
self.exec_logger.warning('Sorry, cannot inject more than 40 V, set it back to 5 V')
volt = 5.
# make sure we are not injecting
self.alim.stop_injection()
# select a polarity to start with
self.alim.set_polarity(True)
# set voltage for test
self.alim.turn_on()
self.alim.set_tx_voltage(volt)
time.sleep(best_tx_injtime) # inject for given tx time
self.alim.start_injection()
# autogain: set best gain
self.current.set_best_gain()
self.voltage.set_best_gain()
# we measure the voltage on both A0 and A2 to guess the polarity
values = self.read_values(duration=0.1)
self.alim.stop_injection()
iab = values[-1, 1]
vmn = values[-1, 2]
# compute constant
c = vmn / iab
Rab = (volt * 1000.) / iab # noqa
self.exec_logger.debug(f'Rab = {Rab:.2f} Ohms')
# implement different strategies
if strategy == 'vmax':
vmn_max = c * current_max
if voltage_max > vmn_max > voltage_min:
vab = current_max * Rab
self.exec_logger.debug('target max current')
else:
iab = voltage_max / c
vab = iab * Rab
self.exec_logger.debug('target max voltage')
if vab > 25.:
vab = 25.
vab = vab * 0.9
elif strategy == 'vmin':
vmn_min = c * current_min
if voltage_min < vmn_min < voltage_max:
vab = current_min * Rab
self.exec_logger.debug('target min current')
else:
iab = voltage_min / c
vab = iab * Rab
self.exec_logger.debug('target min voltage')
if vab < 1.:
vab = 1.
vab = vab * 1.1
elif strategy == 'constant':
vab = volt
else:
vab = 5
return vab
def get_data(self, survey_names=None, cmd_id=None):
"""Get available data.
Parameters
----------
survey_names : list of str, optional
List of filenames already available from the html interface. So
their content won't be returned again. Only files not in the list
will be read.
cmd_id : str, optional
Unique command identifier
"""
# get all .csv file in data folder
if survey_names is None:
survey_names = []
fnames = [fname for fname in os.listdir('data/') if fname[-4:] == '.csv']
ddic = {}
if cmd_id is None:
cmd_id = 'unknown'
for fname in fnames:
if ((fname != 'readme.txt')
and ('_rs' not in fname)
and (fname.replace('.csv', '') not in survey_names)):
try:
data = np.loadtxt('data/' + fname, delimiter=',',
skiprows=1, usecols=(1, 2, 3, 4, 8))
data = data[None, :] if len(data.shape) == 1 else data
ddic[fname.replace('.csv', '')] = {
'a': data[:, 0].astype(int).tolist(),
'b': data[:, 1].astype(int).tolist(),
'm': data[:, 2].astype(int).tolist(),
'n': data[:, 3].astype(int).tolist(),
'rho': data[:, 4].tolist(),
}
except Exception as e:
print(fname, ':', e)
rdic = {'cmd_id': cmd_id, 'data': ddic}
self.data_logger.info(json.dumps(rdic))
return ddic
def interrupt(self, cmd_id=None):
"""Interrupts the acquisition when launched in async mode.
Parameters
----------
cmd_id : str, optional
Unique command identifier
"""
self.status = 'stopping'
if self.thread is not None:
self.thread.join()
self.exec_logger.debug('Interrupted sequence acquisition...')
else:
self.exec_logger.debug('No sequence measurement thread to interrupt.')
self.exec_logger.debug(f'Status: {self.status}')
def load_sequence(self, filename: str, cmd_id=None):
"""Reads quadrupole sequence from file.
Parameters
----------
filename : str
Path of the .csv or .txt file with A, B, M and N electrodes.
Electrode index start at 1.
cmd_id : str, optional
Unique command identifier
Returns
-------
sequence : numpy.array
Array of shape (number quadrupoles * 4).
"""
self.exec_logger.debug(f'Loading sequence {filename}')
try:
sequence = np.loadtxt(filename, delimiter=" ", dtype=np.uint32) # load quadrupole file
self.exec_logger.debug(f'Sequence of {sequence.shape[0]:d} quadrupoles read.')
self.set_sequence(sequence)
except Exception as e:
self.exec_logger.debug('ERROR in load_sequence(): ' + str(e))
if sequence is not None:
self.exec_logger.info(f'Sequence {filename} of {sequence.shape[0]:d} quadrupoles loaded.')
else:
self.exec_logger.warning(f'Unable to load sequence {filename}')
def set_sequence(self, sequence):
"""Set a sequence of quadrupoles.
Parameters
----------
sequence : list of list or np.array
2D array with 1 row per quadrupole.
"""
# locate lines where the electrode index exceeds the maximum number of electrodes
test_index_elec = np.array(np.where(sequence > self.max_elec))
# reshape in case we have a 1D array (=1 quadrupole)
if len(sequence.shape) == 1:
sequence = sequence[None, :]
# test for elec A == B
test_same_elec = np.where(sequence[:, 0] == sequence[:, 1])[0]
ok = True
# if statement with exit cases (TODO rajouter un else if pour le deuxième cas du ticket #2)
if test_index_elec.size != 0:
for i in range(len(test_index_elec[0, :])):
ok = False
self.exec_logger.error(f'An electrode index at line {str(test_index_elec[0, i] + 1)} '
f'exceeds the maximum number of electrodes')
# sys.exit(1)
sequence = None
if len(test_same_elec) != 0:
for i in range(len(test_same_elec)):
ok = False
self.exec_logger.error(f'An electrode index A == B detected at line {str(test_same_elec[i] + 1)}')
# sys.exit(1)
sequence = None
# set sequence attribute
if ok:
self.sequence = sequence
else:
self.exec_logger.error('Unable to set sequence. Fix sequence first.')
def _process_commands(self, message: str):
"""Processes commands received from the controller(s)
Parameters
----------
message : str
message containing a command and arguments or keywords and arguments
"""
status = False
cmd_id = '?'
try:
decoded_message = json.loads(message)
self.exec_logger.debug(f'Decoded message {decoded_message}')
cmd_id = decoded_message.pop('cmd_id', None)
cmd = decoded_message.pop('cmd', None)
kwargs = decoded_message.pop('kwargs', None)
self.exec_logger.debug(f"Calling method {cmd}({str(kwargs) if kwargs is not None else ''})")
if cmd_id is None:
self.exec_logger.warning('You should use a unique identifier for cmd_id')
if cmd is not None:
try:
if kwargs is None:
output = getattr(self, cmd)()
else:
output = getattr(self, cmd)(**kwargs)
status = True
except Exception as e:
self.exec_logger.error(
f"Unable to execute {cmd}({str(kwargs) if kwargs is not None else ''}): {e}")
status = False
except Exception as e:
self.exec_logger.warning(f'Unable to decode command {message}: {e}')
status = False
finally:
reply = {'cmd_id': cmd_id, 'status': status}
reply = json.dumps(reply)
self.exec_logger.debug(f'Execution report: {reply}')
def quit(self, cmd_id=None):
"""Quits OhmPi
Parameters
----------
cmd_id : str, optional
Unique command identifier
"""
self.exec_logger.debug(f'Quitting ohmpi.py following command {cmd_id}')
exit()
def _read_hardware_config(self):
"""Reads hardware configuration from config.py
"""
self.exec_logger.debug('Getting hardware config')
self.id = OHMPI_CONFIG['id'] # ID of the OhmPi
self.Imax = OHMPI_CONFIG['Imax'] # maximum current
self.exec_logger.debug(f'The maximum current cannot be higher than {self.Imax} mA')
self.coef_p2 = OHMPI_CONFIG['coef_p2'] # slope for current conversion for ads.P2, measurement in V/V
self.nb_samples = OHMPI_CONFIG['nb_samples'] # number of samples measured for each stack
self.version = OHMPI_CONFIG['version'] # hardware version
self.max_elec = OHMPI_CONFIG['max_elec'] # maximum number of electrodes
self.board_version = OHMPI_CONFIG['board_version']
self.exec_logger.debug(f'OHMPI_CONFIG = {str(OHMPI_CONFIG)}')
def remove_data(self, cmd_id=None):
"""Remove all data in the data folder
Parameters
----------
cmd_id : str, optional
Unique command identifier
"""
self.exec_logger.debug(f'Removing all data following command {cmd_id}')
shutil.rmtree('data')
os.mkdir('data')
def restart(self, cmd_id=None):
"""Restarts the Raspberry Pi
Parameters
----------
cmd_id : str, optional
Unique command identifier
"""
if self.on_pi:
self.exec_logger.info(f'Restarting pi following command {cmd_id}...')
os.system('reboot')
else:
self.exec_logger.warning('Not on Raspberry Pi, skipping reboot...')
def set_best_gain(self):
"""Set best gain."""
self.current.set_best_gain()
gain0 = self.voltage.get_best_gain(channel=0)
gain2 = self.voltage.get_best_gain(channel=2)
self.voltage.set_gain(np.min([gain0, gain2]))
def read_values(self, duration=0.2, sampling=0.01):
"""Read voltage during a given time for current and voltage ADS.
Parameters
----------
duration : int, optional
Time in seconds to monitor the voltage.
sampling : int, optional
Time between two samples in seconds.
Returns
-------
meas : numpy.array
Array with first column time in ms from start,
second column, current in mA, then voltage in mV
from the different channels.
"""
# compute maximum number of samples possible
# we probably harvest less samples but like this
# we can already allocated the array and that makes
# the collection faster
nsamples = int((int(duration * 1000) // sampling) + 1)
# measurement of current i and voltage u during injection
nchannel = len(self.voltage.read_all())
meas = np.zeros((nsamples, 2 + nchannel)) * np.nan
start_time = time.time() # stating measurement time
elapsed = 0
for i in range(0, nsamples):
# reading current value on ADS channels
elapsed = time.time() - start_time # real injection time (s)
if elapsed >= (duration):
break
meas[i, 0] = elapsed
meas[i, 1] = self.current.read()
meas[i, 2:] = self.voltage.read_all()
time.sleep(sampling)
return meas[:i-1, :]
def run_measurement(self, quad=[0, 0, 0, 0], nb_stack=None, injection_duration=None,
autogain=True, strategy='constant', tx_volt=5, best_tx_injtime=0.1,
duty=1, cmd_id=None):
"""Measures on a quadrupole and returns transfer resistance.
Parameters
----------
quad : iterable (list of int)
Quadrupole to measure, just for labelling. Only switch_mux_on/off
really creates the route to the electrodes.
nb_stack : int, optional
Number of stacks. A stacl is considered two half-cycles (one
positive, one negative).
injection_duration : int, optional
Injection time in seconds.
autogain : bool, optional
If True, will adapt the gain of the ADS1115 to maximize the
resolution of the reading.
strategy : str, optional
(V3.0 only) If we search for best voltage (tx_volt == 0), we can choose
different strategy:
- vmin: find the lowest voltage that gives us a signal
- vmax: find the highest voltage that stays in the range
For a constant value, just set the tx_volt.
tx_volt : float, optional
(V3.0 only) If specified, voltage will be imposed. If 0, we will look
for the best voltage. If the best Tx cannot be found, no
measurement will be taken and values will be NaN.
best_tx_injtime : float, optional
(V3.0 only) Injection time in seconds used for finding the best voltage.
duty : float, optional
Proportion of time spent on injection vs no injection time.
cmd_id : str, optional
Command ID.
"""
self.exec_logger.debug('Starting measurement')
if nb_stack is None:
nb_stack = self.settings['nb_stack']
if injection_duration is None:
injection_duration = self.settings['injection_duration']
tx_volt = float(tx_volt)
# let's define the pin again as if we run through measure()
# as it's run in another thread, it doesn't consider these
# and this can lead to short circuit!
self.alim = Alimentation() # TODO carefully test that
self.alim.stop_injection()
# get best voltage to inject AND polarity
if self.idps:
tx_volt, polarity = self._compute_tx_volt(
best_tx_injtime=best_tx_injtime, strategy=strategy, tx_volt=tx_volt)
self.exec_logger.debug(f'Best vab found is {tx_volt:.3f}V')
# first reset the gain to 2/3 before trying to find best gain (mode 0 is continuous)
self.current.set_gain(2/3)
self.voltage.set_gain(2/3)
# turn on the power supply
if self.alim.on == False:
self.alim.turn_on()
self.alim.set_tx_voltage(tx_volt)
time.sleep(0.05) # let it time to reach tx_volt
if tx_volt > 0: # we found a Vab in the range so we measure
# find best gain during injection
if autogain:
self.alim.start_injection()
time.sleep(injection_duration)
self.set_best_gain()
self.alim.stop_injection()
# make sure we are not injecting
self.alim.stop_injection()
# full data for waveform
fulldata = []
# we sample every 10 ms (as using AnalogIn for both current
# and voltage takes about 7 ms). When we go over the injection
# duration, we break the loop and truncate the meas arrays
# only the last values in meas will be taken into account
start_delay = time.time()
injtimes = np.zeros(nb_stack * 2)
for n in range(0, nb_stack * 2): # for each half-cycles
# current injection polarity
if (n % 2) == 0:
self.alim.set_polarity(True)
else:
self.alim.set_polarity(False)
self.alim.start_injection()
# reading voltages and currents
elapsed = time.time() - start_delay
values = self.read_values(duration=injection_duration)
injtimes[n] = values[-1, 0]
values[:, 0] += elapsed
fulldata.append(values)
# stop current injection
self.alim.stop_injection()
# waiting time (no injection) before next half-cycle
if duty < 1:
duration = injection_duration * (1 - duty)
elapsed = time.time() - start_delay
values = self.read_values(duration=duration)
values[:, 0] += elapsed
fulldata.append(values)
else:
fulldata.append(np.array([[], [], [], []]).T)
# TODO get battery voltage and warn if battery is running low
# TODO send a message on SOH stating the battery level
# let's do some calculation (out of the stacking loop)
stacks = np.zeros((len(fulldata) // 2, fulldata[0].shape[1]-1))
# define number of sample to average for the injection half-cycle
n2avg = int(fulldata[0].shape[0] // 3)
# compute average for the injection half-cycle
for n, meas in enumerate(fulldata[::2]):
stacks[n, :] = np.mean(meas[-n2avg:, 1:], axis=0)
# identify which of U0 or U2 is on top
a = 1
b = 0
if stacks[0, 1] > stacks[0, 2]:
a = 0
b = 1
# compute average vmn and i
iab = np.mean(stacks[:, 1])
vmn = np.mean(stacks[a::2, 1] + stacks[b::2, 2])
# self-potential estimated during on-time
spon = np.mean(stacks[a::2, 1] - stacks[b::2, 2])
# remove the average sp computed on injection half-cycle
vmn = vmn - spon
# compute average self potential between injection half-cycle
if duty < 1:
spoff = 0
n2avg = int(fulldata[0].shape[0] // 3)
for n, meas in enumerate(fulldata[1::2]):
spoff += np.mean(meas[-n2avg:, 2])
spoff = spoff / len(fulldata) * 2
else:
iab = np.nan
vmn = np.nan
spon = np.nan
fulldata = None
# set a low voltage for safety
self.alim.set_tx_voltage(12)
# reshape full data to an array of good size
# we need an array of regular size to save in the csv
if tx_volt > 0: # TODO what if have different array size?
for a in fulldata:
print(a.shape)
fulldata = np.vstack(fulldata)
# we create a big enough array given nb_samples, number of
# half-cycles (1 stack = 2 half-cycles), and twice as we
# measure decay as well
nsamples = int((int(injection_duration * 1000) / duty) // 0.01 + 1)
a = np.zeros((nb_stack * nsamples * 2, fulldata.shape[1])) * np.nan
a[:fulldata.shape[0], :] = fulldata
fulldata = a
# create a dictionary and compute averaged values from all stacks
d = {
"time": datetime.now().isoformat(),
"A": quad[0],
"B": quad[1],
"M": quad[2],
"N": quad[3],
"injtime [ms]": np.mean(injtimes),
"Vmn [mV]": vmn,
"I [mA]": iab,
"R [ohm]": vmn/iab,
"Ps [mV]": spon,
"nbStack": nb_stack,
"tmp [degC]": CPUTemperature().temperature if arm64_imports else -10,
"Nb samples [-]": n2avg,
"stacks": stacks,
"fulldata": fulldata,
}
# to the data logger
dd = d.copy()
dd.pop('fulldata') # too much for logger
dd.update({'A': str(dd['A'])})
dd.update({'B': str(dd['B'])})
dd.update({'M': str(dd['M'])})
dd.update({'N': str(dd['N'])})
# round float to 2 decimal
for key in dd.keys():
if isinstance(dd[key], float):
dd[key] = np.round(dd[key], 3)
dd['cmd_id'] = str(cmd_id)
self.data_logger.info(dd)
return d
def run_sequence(self, cmd_id=None, **kwargs):
"""Runs sequence synchronously (=blocking on main thread).
Additional arguments are passed to run_measurement().
Parameters
----------
cmd_id : str, optional
Unique command identifier.
kwargs : optional
Optional keyword arguments passed to run_measurement().
See help(OhmPi.run_measurement).
"""
self.status = 'running'
self.exec_logger.debug(f'Status: {self.status}')
self.exec_logger.debug(f'Measuring sequence: {self.sequence}')
# create filename with timestamp
filename = self.settings["export_path"].replace('.csv',
f'_{datetime.now().strftime("%Y%m%dT%H%M%S")}.csv')
self.exec_logger.debug(f'Saving to {filename}')
# make sure all multiplexer are off
self.mux.reset()
# measure all quadrupole of the sequence
if self.sequence is None:
seq = np.array([[0, 0, 0, 0]])
else:
seq = self.sequence.copy()
for i in range(0, seq.shape[0]):
quad = seq[i, :]
if self.status == 'stopping':
break
# call the switch_mux function to switch to the right electrodes
self.switch_mux_on(quad)
# run a measurement
acquired_data = self.run_measurement(quad, **kwargs)
self.data_logger.info(acquired_data)
# switch mux off
self.switch_mux_off(quad)
# add command_id in dataset
acquired_data.update({'cmd_id': cmd_id})
# log data to the data logger
# self.data_logger.info(f'{acquired_data}')
# save data and print in a text file
self.append_and_save(filename, acquired_data)
self.exec_logger.debug(f'quadrupole {i + 1:d}/{seq.shape[0]:d}')
self.status = 'idle'
def run_sequence_async(self, cmd_id=None, **kwargs):
"""Runs the sequence in a separate thread. Can be stopped by 'OhmPi.interrupt()'.
Additional arguments are passed to run_measurement().
Parameters
----------
cmd_id : str, optional
Unique command identifier
"""
def func():
self.run_sequence(**kwargs)
self.thread = threading.Thread(target=func)
self.thread.start()
self.status = 'idle'
def run_multiple_sequences(self, sequence_delay=None, nb_meas=None, cmd_id=None, **kwargs):
"""Runs multiple sequences in a separate thread for monitoring mode.
Can be stopped by 'OhmPi.interrupt()'.
Additional arguments are passed to run_measurement().
Parameters
----------
cmd_id : str, optional
Unique command identifier
sequence_delay : int, optional
Number of seconds at which the sequence must be started from each others.
nb_meas : int, optional
Number of time the sequence must be repeated.
kwargs : dict, optional
See help(k.run_measurement) for more info.
"""
# self.run = True
if sequence_delay is None:
sequence_delay = self.settings['sequence_delay']
sequence_delay = int(sequence_delay)
if nb_meas is None:
nb_meas = self.settings['nb_meas']
self.status = 'running'
self.exec_logger.debug(f'Status: {self.status}')
self.exec_logger.debug(f'Measuring sequence: {self.sequence}')
def func():
for g in range(0, nb_meas): # for time-lapse monitoring
if self.status == 'stopping':
self.exec_logger.warning('Data acquisition interrupted')
break
t0 = time.time()
self.run_sequence(**kwargs)
# sleeping time between sequence
dt = sequence_delay - (time.time() - t0)
if dt < 0:
dt = 0
if nb_meas > 1:
time.sleep(dt) # waiting for next measurement (time-lapse)
self.status = 'idle'
self.thread = threading.Thread(target=func)
self.thread.start()
def _quad2qdic(self, quad):
"""Convert a quadrupole to a more flexible qdic
of format {'A': [1], 'B': [2], 'M': [3], 'N': [4]}.
This format enable to inject at several electrodes and
is more flexible for multichannelling (we can add M1, N1, ...).
Parameters
----------
quad : list of int,
List of quadrupoles. Electrodes equal to 0 are ignored.
Returns
-------
Dictionnary in the form: {role: [list of electrodes]}.
"""
return dict(zip(['A', 'B', 'M', 'N'], [[a] for a in quad if a > 0]))
def switch_mux_on(self, quad):
""""Switch quadrupoles on.
Parameters
----------
quad : list of int,
List of quadrupoles. Electrodes equal to 0 are ignored.
"""
qdic = self._quad2qdic(quad)
self.mux.switch(qdic, 'on')
def switch_mux_off(self, quad):
"""Switch quadrupoles off.
Parameters
----------
quad : list of int,
List of quadrupoles. Electrodes equal to 0 are ignored.
"""
qdic = self._quad2qdic(quad)
self.mux.switch(qdic, 'off')
def reset_mux(self):
"""Reset the mux, make sure all relays are off.
"""
self.mux.reset()
def rs_check(self, tx_volt=12., cmd_id=None):
"""Checks contact resistances.
Parameters
----------
tx_volt : float, optional
Voltage of the injection.
cmd_id : str, optional
Unique command identifier.
"""
# create custom sequence where MN == AB
# we only check the electrodes which are in the sequence (not all might be connected)
if self.sequence is None:
quads = np.array([[1, 2, 0, 0]], dtype=np.uint32)
else:
elec = np.sort(np.unique(self.sequence.flatten())) # assumed order
quads = np.vstack([
elec[:-1],
elec[1:],
np.zeros(len(elec)-1),
np.zeros(len(elec)-1)
]).T
# create filename to store RS
export_path_rs = self.settings['export_path'].replace('.csv', '') \
+ '_' + datetime.now().strftime('%Y%m%dT%H%M%S') + '_rs.csv'
# perform RS check
self.status = 'running'
# make sure all mux are off to start with
self.mux.reset()
# turn on alim
self.alim.turn_on()
self.alim.set_tx_voltage(tx_volt)
# measure all quad of the RS sequence
for i in range(0, quads.shape[0]):
quad = quads[i, :] # quadrupole
self.switch_mux_on(quad) # put before raising the pins (otherwise conflict i2c)
d = self.run_measurement(
quad=quad, nb_stack=1, injection_duration=0.2,
tx_volt=tx_volt, autogain=False)
self.switch_mux_off(quad)
voltage = d['Tx [V]']
current = d['I [mA]'] / 1000.
# compute resistance measured (= contact resistance)
resist = abs(voltage / current) / 1000.
# print(str(quad) + '> I: {:>10.3f} mA, V: {:>10.3f} mV, R: {:>10.3f} kOhm'.format(
# current, voltage, resist))
msg = f'Contact resistance {str(quad):s}: I: {current * 1000.:>10.3f} mA, ' \
f'V: {voltage :>10.3f} mV, ' \
f'R: {resist :>10.3f} kOhm'
self.exec_logger.debug(msg)
# if contact resistance = 0 -> we have a short circuit!!
if resist < 1e-5:
msg = f'!!!SHORT CIRCUIT!!! {str(quad):s}: {resist:.3f} kOhm'
self.exec_logger.warning(msg)
# save data in a text file
self.append_and_save(export_path_rs, {
'A': quad[0],
'B': quad[1],
'RS [kOhm]': resist,
})
self.alim.turn_off()
self.status = 'idle'
def update_settings(self, settings: str, cmd_id=None):
"""Updates acquisition settings from a json file or dictionary.
Parameters can be:
- nb_electrodes (number of electrode used, if 4, no MUX needed)
- injection_duration (in seconds)
- nb_meas (total number of times the sequence will be run)
- sequence_delay (delay in second between each sequence run)
- nb_stack (number of stack for each quadrupole measurement)
- export_path (path where to export the data, timestamp will be added to filename)
Parameters
----------
settings : str, dict
Path to the .json settings file or dictionary of settings.
cmd_id : str, optional
Unique command identifier
"""
status = False
if settings is not None:
try:
if isinstance(settings, dict):
self.settings.update(settings)
else:
with open(settings) as json_file:
dic = json.load(json_file)
self.settings.update(dic)
self.exec_logger.debug('Acquisition parameters updated: ' + str(self.settings))
status = True
except Exception as e: # noqa
self.exec_logger.warning('Unable to update settings.')
status = False
else:
self.exec_logger.warning('Settings are missing...')
return status
def stop(self, **kwargs):
warnings.warn('This function is deprecated. Use interrupt instead.', DeprecationWarning)
self.interrupt(**kwargs)
def _update_acquisition_settings(self, config):
warnings.warn('This function is deprecated, use update_settings() instead.', DeprecationWarning)
self.update_settings(settings=config)
# Properties
@property
def sequence(self):
"""Gets sequence"""
if self._sequence is not None:
assert isinstance(self._sequence, np.ndarray)
return self._sequence
# TODO not sure if the below is still needed now we have a
# method set_sequence()
@sequence.setter
def sequence(self, sequence):
"""Sets sequence"""
if sequence is not None:
assert isinstance(sequence, np.ndarray)
self.use_mux = True
else:
self.use_mux = False
self._sequence = sequence
VERSION = '3.0.0'
print(colored(r' ________________________________' + '\n' +
r'| _ | | | || \/ || ___ \_ _|' + '\n' +
r'| | | | |_| || . . || |_/ / | |' + '\n' +
r'| | | | _ || |\/| || __/ | |' + '\n' +
r'\ \_/ / | | || | | || | _| |_' + '\n' +
r' \___/\_| |_/\_| |_/\_| \___/ ', 'red'))
print('Version:', VERSION)
platform, on_pi = get_platform()
if on_pi:
print(colored(f'\u2611 Running on {platform} platform', 'green'))
# TODO: check model for compatible platforms (exclude Raspberry Pi versions that are not supported...)
# and emit a warning otherwise
if not arm64_imports:
print(colored(f'Warning: Required packages are missing.\n'
f'Please run ./env.sh at command prompt to update your virtual environment\n', 'yellow'))
else:
print(colored(f'\u26A0 Not running on the Raspberry Pi platform.\nFor simulation purposes only...', 'yellow'))
current_time = datetime.now()
print(f'local date and time : {current_time.strftime("%Y-%m-%d %H:%M:%S")}')
# for testing
if __name__ == "__main__":
ohmpi = OhmPi(settings=OHMPI_CONFIG['settings'])
if ohmpi.controller is not None:
ohmpi.controller.loop_forever()