Commit 12e57d12 authored by Interdonato Roberto's avatar Interdonato Roberto
Browse files

Replace geonet_gradient_selected.py

parent dbe80310
No related merge requests found
Showing with 29 additions and 10 deletions
+29 -10
...@@ -11,14 +11,15 @@ from collections import OrderedDict ...@@ -11,14 +11,15 @@ from collections import OrderedDict
import matplotlib as mpl import matplotlib as mpl
#shapefile = "D:\\Mes Donnees\\Land Matrix\\Shapefile\\" #shapefile = "D:\\Mes Donnees\\Land Matrix\\Shapefile\\"
from mpl_toolkits.axes_grid1 import make_axes_locatable from mpl_toolkits.axes_grid1 import make_axes_locatable
from geopandas import GeoDataFrame
from descartes import PolygonPatch from descartes import PolygonPatch
from scalebar import north_arrow
import os
#dataset_name = 'mines' #dataset_name = 'mines'
#dataset_name = "agriculture+biofuel" #dataset_name = "agriculture+biofuel"
dataset_name = "global" dataset_name = "global"
selected_iso = "USA" selected_iso = "BRA"
direction=['in','out','both'] direction=['in','out','both']
...@@ -28,11 +29,22 @@ degrees = ['in', 'out','inout'] ...@@ -28,11 +29,22 @@ degrees = ['in', 'out','inout']
degree = degrees[2] degree = degrees[2]
path = ".\\data_net\\net_%s_surf_inOperation.ncol" % dataset_name #path = ".\\data_net\\net_%s_surf_inOperation.ncol" % dataset_name
#path_d = ".\\data_net\\ids_to_countries_%s_inOperation.csv" % dataset_name
os.chdir("D:\\Mes Donnees\\Land Matrix\\_LURKER\\net\\")
degrees = ['in', 'out','inout','inout_num']
path_iso = "ISO country.xlsx"
path_d ="ids_to_countries_global_07072021_inOperation.csv"
path = "net_global_07072021_inOperation.ncol"
graph = nx.read_edgelist(path, delimiter=';', create_using=nx.DiGraph(), nodetype=int, data=(('weight', int),)) graph = nx.read_edgelist(path, delimiter=';', create_using=nx.DiGraph(), nodetype=int, data=(('weight', int),))
path_d = ".\\data_net\\ids_to_countries_%s_inOperation.csv" % dataset_name
names_dict = {} names_dict = {}
coord = {} coord = {}
...@@ -40,7 +52,9 @@ lat = [] ...@@ -40,7 +52,9 @@ lat = []
long = [] long = []
fc = open(".\\data_net\\countries_to_coord_allTransnational.csv", 'r') #fc = open(".\\data_net\\countries_to_coord_allTransnational.csv", 'r')
fc = open("countries_to_coord_allTransnational.csv", 'r')
for line in fc: for line in fc:
vals=line.split(';') vals=line.split(';')
coord[vals[0]] = (float(vals[1]), float(vals[2].strip())) coord[vals[0]] = (float(vals[1]), float(vals[2].strip()))
...@@ -83,8 +97,8 @@ for id in names_dict: ...@@ -83,8 +97,8 @@ for id in names_dict:
pos[int(id)]=(coord[names_dict[id]][1],coord[names_dict[id]][0]) pos[int(id)]=(coord[names_dict[id]][1],coord[names_dict[id]][0])
path_iso = ".\\data_net\\ISO country.xlsx" path_iso = "ISO country.xlsx"
iso = pd.read_excel(path_iso, index_col=0, sep=';') iso = pd.read_excel(path_iso, index_col=0)
iso_dict = {} iso_dict = {}
inv_iso_dict= {} inv_iso_dict= {}
...@@ -131,6 +145,9 @@ ax.coastlines() ...@@ -131,6 +145,9 @@ ax.coastlines()
#ax.set_extent([-90, -180, 90, 180]) #ax.set_extent([-90, -180, 90, 180])
ax.set_global() ax.set_global()
north_arrow(ax, (0.1,0.2), 500)
#backround image #backround image
#si = ax.stock_img() #si = ax.stock_img()
#si.set_zorder(-1) #si.set_zorder(-1)
...@@ -285,7 +302,9 @@ pc.set_array(norm(list(score.values()))) ...@@ -285,7 +302,9 @@ pc.set_array(norm(list(score.values())))
#cax = divider.append_axes("right", size="5%", pad=0.05) #cax = divider.append_axes("right", size="5%", pad=0.05)
#plt.colorbar(pc,fraction=0.046, pad=0.05) #plt.colorbar(pc,fraction=0.046, pad=0.05)
plt.colorbar(pc,fraction=0.023, pad=0.05) cb = plt.colorbar(pc,fraction=0.023, pad=0.05)
cb.ax.tick_params(labelsize=20)
#ax.set_axis_off() #ax.set_axis_off()
plt.tight_layout() plt.tight_layout()
...@@ -309,7 +328,7 @@ nx.draw_networkx(graph, ax=ax, ...@@ -309,7 +328,7 @@ nx.draw_networkx(graph, ax=ax,
""" """
plt.savefig("map_inout_%s_%s.pdf" % (dataset_name,selected_iso), format="pdf", dpi=300) #plt.savefig("map_inout_%s_%s_test.pdf" % (dataset_name,selected_iso), format="pdf", dpi=300)
#plt.show() plt.show()
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment