An error occurred while loading the file. Please try again.
-
Pierre-Antoine Rouby authoredae857a09
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
import io
import os
import os.path as op
from collections import OrderedDict
from contextlib import redirect_stdout
from multiprocessing.pool import Pool
from typing import List, Dict, Tuple
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from PIL import Image
from PIL import ImageDraw
from matplotlib import cm
from matplotlib.colors import Normalize
from netCDF4 import Dataset
from experiment.meteo_france_data.scm_models_data.abstract_variable import AbstractVariable
from experiment.meteo_france_data.scm_models_data.scm_constants import ALTITUDES, ZS_INT_23, ZS_INT_MASK, LONGITUDES, \
LATITUDES
from experiment.meteo_france_data.scm_models_data.visualization.utils import get_km_formatter
from extreme_estimator.extreme_models.margin_model.margin_function.abstract_margin_function import \
AbstractMarginFunction
from extreme_estimator.margin_fits.plot.create_shifted_cmap import get_color_rbga_shifted, create_colorbase_axis
from spatio_temporal_dataset.coordinates.abstract_coordinates import AbstractCoordinates
from spatio_temporal_dataset.coordinates.spatial_coordinates.abstract_spatial_coordinates import \
AbstractSpatialCoordinates
from spatio_temporal_dataset.spatio_temporal_observations.annual_maxima_observations import AnnualMaxima
from utils import get_full_path, cached_property, NB_CORES
f = io.StringIO()
with redirect_stdout(f):
from simpledbf import Dbf5
class AbstractStudy(object):
"""
A Study is defined by:
- a variable class that correspond to the meteorogical quantity of interest
- an altitude of interest
- a start and a end year
Les fichiers netcdf de SAFRAN et CROCUS sont autodocumentés (on peut les comprendre avec ncdump -h notamment).
"""
REANALYSIS_FOLDER = 'alp_flat/reanalysis'
def __init__(self, variable_class: type, altitude: int = 1800, year_min=1000, year_max=3000,
multiprocessing=True):
assert altitude in ALTITUDES, altitude
self.altitude = altitude
self.model_name = None
self.variable_class = variable_class
self.year_min = year_min
self.year_max = year_max
self.multiprocessing = multiprocessing
""" Annual maxima """
@property
def observations_annual_maxima(self) -> AnnualMaxima:
return AnnualMaxima(df_maxima_gev=pd.DataFrame(self.year_to_annual_maxima, index=self.study_massif_names))
@cached_property
def year_to_annual_maxima(self) -> OrderedDict:
# Map each year to an array of size nb_massif
year_to_annual_maxima = OrderedDict()
for year, time_serie in self._year_to_max_daily_time_serie.items():
year_to_annual_maxima[year] = time_serie.max(axis=0)
return year_to_annual_maxima
""" Annual total """
@property
def df_annual_total(self) -> pd.DataFrame:
return pd.DataFrame(self.year_to_annual_total, index=self.study_massif_names).transpose()
def annual_aggregation_function(self, *args, **kwargs):
raise NotImplementedError()
@cached_property
def year_to_annual_total(self) -> OrderedDict:
# Map each year to an array of size nb_massif
year_to_annual_mean = OrderedDict()
for year, time_serie in self._year_to_daily_time_serie_array.items():
year_to_annual_mean[year] = self.apply_annual_aggregation(time_serie)
return year_to_annual_mean
def apply_annual_aggregation(self, time_serie):
return self.annual_aggregation_function(time_serie, axis=0)
""" Load daily observations """
@cached_property
def year_to_daily_time_serie_array(self) -> OrderedDict:
return self._year_to_daily_time_serie_array
@property
def _year_to_max_daily_time_serie(self) -> OrderedDict:
return self._year_to_daily_time_serie_array
@property
def _year_to_daily_time_serie_array(self) -> OrderedDict:
# Map each year to a matrix of size 365-nb_days_consecutive+1 x nb_massifs
year_to_daily_time_serie_array = OrderedDict()
for year in self.ordered_years:
# Check daily data
daily_time_serie = self.year_to_variable_object[year].daily_time_serie_array
assert daily_time_serie.shape[0] in [365, 366]
assert daily_time_serie.shape[1] == len(ZS_INT_MASK)
# Filter only the data corresponding to the altitude of interest
daily_time_serie = daily_time_serie[:, self.altitude_mask]
year_to_daily_time_serie_array[year] = daily_time_serie
return year_to_daily_time_serie_array
""" Load Variables and Datasets """
@cached_property
def year_to_variable_object(self) -> OrderedDict:
# Map each year to the variable array
path_files, ordered_years = self.ordered_years_and_path_files
if self.multiprocessing:
with Pool(NB_CORES) as p:
variables = p.map(self.load_variable_object, path_files)
else:
variables = [self.load_variable_object(path_file) for path_file in path_files]
return OrderedDict(zip(ordered_years, variables))
def instantiate_variable_object(self, variable_array) -> AbstractVariable:
return self.variable_class(variable_array)
def load_variable_array(self, dataset):
return np.array(dataset.variables[self.load_keyword()])
def load_variable_object(self, path_file):
dataset = Dataset(path_file)
variable_array = self.load_variable_array(dataset)
return self.instantiate_variable_object(variable_array)
def load_keyword(self):
return self.variable_class.keyword()
@property
def year_to_dataset_ordered_dict(self) -> OrderedDict:
print('This code is quite long... '
'You should consider year_to_variable which is way faster when multiprocessing=True')
# Map each year to the correspond netCDF4 Dataset
path_files, ordered_years = self.ordered_years_and_path_files
datasets = [Dataset(path_file) for path_file in path_files]
return OrderedDict(zip(ordered_years, datasets))
@cached_property
def ordered_years_and_path_files(self):
nc_files = [(int(f.split('_')[-2][:4]), f) for f in os.listdir(self.study_full_path) if f.endswith('.nc')]
ordered_years, path_files = zip(*[(year, op.join(self.study_full_path, nc_file))
for year, nc_file in sorted(nc_files, key=lambda t: t[0])
if self.year_min <= year < self.year_max])
return path_files, ordered_years
""" Temporal properties """
@property
def ordered_years(self):
return self.ordered_years_and_path_files[1]
@property
def start_year_and_stop_year(self) -> Tuple[int, int]:
ordered_years = self.ordered_years
return ordered_years[0], ordered_years[-1]
""" Spatial properties """
@property
def study_massif_names(self) -> List[str]:
return self.altitude_to_massif_names[self.altitude]
@property
def df_massifs_longitude_and_latitude(self) -> pd.DataFrame:
# DataFrame object that represents the massif coordinates in degrees extracted from the SCM data
# Another way of getting the latitudes and longitudes could have been the following:
# any_ordered_dict = list(self.year_to_dataset_ordered_dict.values())[0]
# longitude = np.array(any_ordered_dict.variables['longitude'])
# latitude = np.array(any_ordered_dict.variables['latitude'])
longitude = np.array(LONGITUDES)
latitude = np.array(LATITUDES)
columns = [AbstractSpatialCoordinates.COORDINATE_X, AbstractSpatialCoordinates.COORDINATE_Y]
data = dict(zip(columns, [longitude[self.altitude_mask], latitude[self.altitude_mask]]))
return pd.DataFrame(data=data, index=self.study_massif_names, columns=columns)
@property
def missing_massif_name(self):
return set(self.all_massif_names) - set(self.altitude_to_massif_names[self.altitude])
@cached_property
def altitude_mask(self):
altitude_mask = ZS_INT_MASK == self.altitude
assert np.sum(altitude_mask) == len(self.altitude_to_massif_names[self.altitude])
return altitude_mask
""" Path properties """
@property
def title(self):
return "{}/at altitude {}m ({} mountain chains)".format(self.variable_name, self.altitude,
len(self.study_massif_names))
@property
def variable_name(self):
return self.variable_class.NAME + ' (in {})'.format(self.variable_unit)
@property
def variable_unit(self):
return self.variable_class.UNIT
""" Visualization methods """
@cached_property
def massifs_coordinates_for_display(self) -> AbstractSpatialCoordinates:
# Coordinate object that represents the massif coordinates in Lambert extended
# extracted for a csv file, and used only for display purposes
df = self.load_df_centroid()
# Filter, keep massifs present at the altitude of interest
df = df.loc[self.study_massif_names]
# Build coordinate object from df_centroid
return AbstractSpatialCoordinates.from_df(df)
def visualize_study(self, ax=None, massif_name_to_value=None, show=True, fill=True, replace_blue_by_white=True,
label=None, add_text=False, cmap=None, vmax=100, vmin=0):
if massif_name_to_value is None:
massif_name_to_fill_kwargs = None
else:
massif_names, values = list(zip(*massif_name_to_value.items()))
if cmap is None:
colors = get_color_rbga_shifted(ax, replace_blue_by_white, values, label=label)
else:
norm = Normalize(vmin, vmax)
create_colorbase_axis(ax, label, cmap, norm)
m = cm.ScalarMappable(norm=norm, cmap=cmap)
colors = [m.to_rgba(value) if not np.isnan(value) else 'w' for value in values]
massif_name_to_fill_kwargs = {massif_name: {'color': color} for massif_name, color in
zip(massif_names, colors)}
if ax is None:
ax = plt.gca()
for coordinate_id, coords_list in self.idx_to_coords_list.items():
# Retrieve the list of coords (x,y) that define the contour of the massif of id coordinate_id
# if j == 0:
# mask_outside_polygon(poly_verts=l, ax=ax)
# Plot the contour of the massif
coords_list = list(zip(*coords_list))
ax.plot(*coords_list, color='black')
# Potentially, fill the inside of the polygon with some color
if fill and coordinate_id in self.coordinate_id_to_massif_name:
massif_name = self.coordinate_id_to_massif_name[coordinate_id]
if massif_name_to_fill_kwargs is not None and massif_name in massif_name_to_fill_kwargs:
fill_kwargs = massif_name_to_fill_kwargs[massif_name]
ax.fill(*coords_list, **fill_kwargs)
# else:
# fill_kwargs = {}
# x , y = list(self.massifs_coordinates.df_all_coordinates.loc[massif_name])
# x , y= coords_list[0][0], coords_list[0][1]
# print(x, y)
# print(massif_name)
# ax.scatter(x, y)
# ax.text(x, y, massif_name)
# Display the center of the massif
ax.scatter(self.massifs_coordinates_for_display.x_coordinates,
self.massifs_coordinates_for_display.y_coordinates, s=1)
# Improve some explanation on the X axis and on the Y axis
ax.set_xlabel('Longitude (km)')
ax.xaxis.set_major_formatter(get_km_formatter())
ax.set_ylabel('Latitude (km)')
ax.yaxis.set_major_formatter(get_km_formatter())
# Display the name or value of the massif
if add_text:
for _, row in self.massifs_coordinates_for_display.df_all_coordinates.iterrows():
x, y = list(row)
massif_name = row.name
value = massif_name_to_value[massif_name]
ax.text(x, y, str(round(value, 1)))
if show:
plt.show()
"""
CLASS ATTRIBUTES COMMON TO ALL OBJECTS
(written as object attributes/methods for simplicity)
"""
""" Path properties """
@property
def relative_path(self) -> str:
return r'local/spatio_temporal_datasets'
@property
def full_path(self) -> str:
return get_full_path(relative_path=self.relative_path)
@property
def map_full_path(self) -> str:
return op.join(self.full_path, 'map')
@property
def result_full_path(self) -> str:
return op.join(self.full_path, 'results')
@property
def study_full_path(self) -> str:
assert self.model_name in ['Safran', 'Crocus']
study_folder = 'meteo' if self.model_name is 'Safran' else 'pro'
return op.join(self.full_path, self.REANALYSIS_FOLDER, study_folder)
""" Spatial properties """
@property
def original_safran_massif_id_to_massif_name(self) -> Dict[int, str]:
return {massif_id: massif_name for massif_id, massif_name in enumerate(self.all_massif_names)}
@cached_property
def all_massif_names(self) -> List[str]:
"""
Pour l'identification des massifs, le numéro de la variable massif_num correspond à celui de l'attribut num_opp
"""
metadata_path = op.join(self.full_path, self.REANALYSIS_FOLDER, 'metadata')
dbf = Dbf5(op.join(metadata_path, 'massifs_alpes.dbf'))
df = dbf.to_dataframe().copy() # type: pd.DataFrame
dbf.f.close()
df.sort_values(by='num_opp', inplace=True)
all_massif_names = list(df['nom'])
# Correct a massif name
all_massif_names[all_massif_names.index('Beaufortin')] = 'Beaufortain'
return all_massif_names
def load_df_centroid(self) -> pd.DataFrame:
# Load df_centroid containing all the massif names
df_centroid = pd.read_csv(op.join(self.map_full_path, 'coordonnees_massifs_alpes.csv'))
df_centroid.set_index('NOM', inplace=True)
# Check that the names of massifs are the same
symmetric_difference = set(df_centroid.index).symmetric_difference(self.all_massif_names)
assert len(symmetric_difference) == 0, symmetric_difference
# Sort the column in the order of the SAFRAN dataset
df_centroid = df_centroid.reindex(self.all_massif_names, axis=0)
for coord_column in [AbstractCoordinates.COORDINATE_X, AbstractCoordinates.COORDINATE_Y]:
df_centroid.loc[:, coord_column] = df_centroid[coord_column].str.replace(',', '.').astype(float)
return df_centroid
@cached_property
def massif_name_to_altitudes(self) -> Dict[str, List[int]]:
s = ZS_INT_23 + [0]
zs_list = []
zs_all_list = []
for a, b in zip(s[:-1], s[1:]):
zs_list.append(a)
if a > b:
zs_all_list.append(zs_list)
zs_list = []
return OrderedDict(zip(self.all_massif_names, zs_all_list))
@cached_property
def altitude_to_massif_names(self) -> Dict[int, List[str]]:
altitude_to_massif_names = {altitude: [] for altitude in ALTITUDES}
for massif_name in self.massif_name_to_altitudes.keys():
for altitude in self.massif_name_to_altitudes[massif_name]:
altitude_to_massif_names[altitude].append(massif_name)
return altitude_to_massif_names
""" Visualization methods """
@property
def coordinate_id_to_massif_name(self) -> Dict[int, str]:
df_centroid = self.load_df_centroid()
return dict(zip(df_centroid['id'], df_centroid.index))
@property
def idx_to_coords_list(self):
df_massif = pd.read_csv(op.join(self.map_full_path, 'massifsalpes.csv'))
coord_tuples = [(row_massif['idx'], row_massif[AbstractCoordinates.COORDINATE_X],
row_massif[AbstractCoordinates.COORDINATE_Y])
for _, row_massif in df_massif.iterrows()]
all_idxs = set([t[0] for t in coord_tuples])
return {idx: [coords for idx_loop, *coords in coord_tuples if idx == idx_loop] for idx in all_idxs}
@property
def all_coords_list(self):
all_values = []
for e in self.idx_to_coords_list.values():
all_values.extend(e)
return list(zip(*all_values))
@property
def visualization_x_limits(self):
return min(self.all_coords_list[0]), max(self.all_coords_list[0])
@property
def visualization_y_limits(self):
return min(self.all_coords_list[1]), max(self.all_coords_list[1])
@cached_property
def mask_french_alps(self):
resolution = AbstractMarginFunction.VISUALIZATION_RESOLUTION
mask_french_alps = np.zeros([resolution, resolution])
for polygon in self.idx_to_coords_list.values():
xy_values = list(zip(*polygon))
normalized_polygon = []
for values, (minlim, max_lim) in zip(xy_values, [self.visualization_x_limits, self.visualization_y_limits]):
values -= minlim
values *= resolution / (max_lim - minlim)
normalized_polygon.append(values)
normalized_polygon = list(zip(*normalized_polygon))
img = Image.new('L', (resolution, resolution), 0)
ImageDraw.Draw(img).polygon(normalized_polygon, outline=1, fill=1)
mask_massif = np.array(img)
mask_french_alps += mask_massif
return ~np.array(mask_french_alps, dtype=bool)