Commit dffc8b9d authored by Delaigue Olivier's avatar Delaigue Olivier
Browse files

Merge branch 'formatRunModel' into 'dev'

Resolve "Clean the RunModel functions"

Closes #14

See merge request !17
parents e6a15bba 81fb0b6c
Pipeline #17740 passed with stages
in 11 minutes and 36 seconds
Package: airGR
Type: Package
Title: Suite of GR Hydrological Models for Precipitation-Runoff Modelling
Version: 1.6.3.42
Date: 2020-11-09
Version: 1.6.3.65
Date: 2020-11-17
Authors@R: c(
person("Laurent", "Coron", role = c("aut", "trl"), comment = c(ORCID = "0000-0002-1503-6204")),
person("Olivier", "Delaigue", role = c("aut", "cre"), comment = c(ORCID = "0000-0002-7668-8468"), email = "airGR@inrae.fr"),
......
......@@ -4,7 +4,7 @@
### 1.6.3.42 Release Notes (2020-11-09)
### 1.6.3.65 Release Notes (2020-11-17)
#### New features
......
......@@ -8,7 +8,7 @@ RunModel_CemaNeige <- function(InputsModel, RunOptions, Param) {
FortranOutputsCemaNeige <- .FortranOutputs(GR = NULL, isCN = TRUE)$CN
## Arguments_check
## Arguments check
if (!inherits(InputsModel, "InputsModel")) {
stop("'InputsModel' must be of class 'InputsModel'")
}
......@@ -39,7 +39,7 @@ RunModel_CemaNeige <- function(InputsModel, RunOptions, Param) {
time_mult <- 24
}
## Input_data_preparation
## Input data preparation
if (identical(RunOptions$IndPeriod_WarmUp, as.integer(0))) {
RunOptions$IndPeriod_WarmUp <- NULL
}
......@@ -52,7 +52,7 @@ RunModel_CemaNeige <- function(InputsModel, RunOptions, Param) {
## SNOW_MODULE________________________________________________________________________________
## CemaNeige________________________________________________________________________________
ParamCemaNeige <- Param
NLayers <- length(InputsModel$LayerPrecip)
......@@ -71,7 +71,7 @@ RunModel_CemaNeige <- function(InputsModel, RunOptions, Param) {
NameCemaNeigeLayers <- "CemaNeigeLayers"
## Call_DLL_CemaNeige_________________________
## Call CemaNeige Fortran_________________________
for (iLayer in 1:NLayers) {
if (!IsHyst) {
......@@ -105,7 +105,7 @@ RunModel_CemaNeige <- function(InputsModel, RunOptions, Param) {
## Data_storage
## Data storage
CemaNeigeLayers[[iLayer]] <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i])
names(CemaNeigeLayers[[iLayer]]) <- FortranOutputsCemaNeige[IndOutputsCemaNeige]
if (ExportStateEnd) {
......@@ -113,7 +113,7 @@ RunModel_CemaNeige <- function(InputsModel, RunOptions, Param) {
}
rm(RESULTS)
} ### ENDFOR_iLayer
} ### ENDFOR iLayer
names(CemaNeigeLayers) <- sprintf("Layer%02i", seq_len(NLayers))
......@@ -129,7 +129,7 @@ RunModel_CemaNeige <- function(InputsModel, RunOptions, Param) {
verbose = FALSE)
}
## Output_data_preparation
## Output data preparation
if (!ExportDatesR & !ExportStateEnd) {
OutputsModel <- list(CemaNeigeLayers)
names(OutputsModel) <- NameCemaNeigeLayers
......
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
RunModel_GR1A <- function(InputsModel, RunOptions, Param) {
## Initialization of variables
NParam <- 1
FortranOutputs <- .FortranOutputs(GR = "GR1A")$GR
## Arguments_check
## Arguments check
if (!inherits(InputsModel, "InputsModel")) {
stop("'InputsModel' must be of class 'InputsModel'")
}
......@@ -48,8 +50,8 @@ RunModel_GR1A <- function(InputsModel, RunOptions, Param) {
ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim
## Call_fortan
RESULTS <- .Fortran("frun_gr1a", PACKAGE = "airGR",
## Call GR model Fortan
RESULTS <- .Fortran("frun_gr1a", PACKAGE = "airGR",
## inputs
LInputs = LInputSeries, ### length of input and output series
InputsPrecip = InputsModel$Precip[IndPeriod1], ### input series of total precipitation [mm/y]
......@@ -61,11 +63,11 @@ RunModel_GR1A <- function(InputsModel, RunOptions, Param) {
NOutputs = as.integer(length(IndOutputs)), ### number of output series
IndOutputs = IndOutputs, ### indices of output series
## outputs
Outputs = matrix(as.double(-999.999), nrow = LInputSeries,ncol=length(IndOutputs)), ### output series [mm]
Outputs = matrix(as.double(-999.999), nrow = LInputSeries, ncol=length(IndOutputs)), ### output series [mm]
StateEnd = rep(as.double(-999.999), length(RunOptions$IniStates)) ### state variables at the end of the model run
)
RESULTS$Outputs[ round(RESULTS$Outputs , 3) == (-999.999)] <- NA
RESULTS$StateEnd[round(RESULTS$StateEnd, 3) == (-999.999)] <- NA
RESULTS$Outputs[ round(RESULTS$Outputs , 3) == -999.999] <- NA
RESULTS$StateEnd[round(RESULTS$StateEnd, 3) == -999.999] <- NA
## Output data preparation
......@@ -76,20 +78,20 @@ RunModel_GR1A <- function(InputsModel, RunOptions, Param) {
}
## DatesR and OutputsModel only
if (ExportDatesR & !ExportStateEnd) {
OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]))
names(OutputsModel) <- c("DatesR", FortranOutputs[IndOutputs])
}
## OutputsModel and SateEnd only
if (!ExportDatesR & ExportStateEnd) {
OutputsModel <- c(lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]),
OutputsModel <- c(lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]),
list(RESULTS$StateEnd))
names(OutputsModel) <- c(FortranOutputs[IndOutputs], "StateEnd")
}
## DatesR and OutputsModel and SateEnd
if ((ExportDatesR & ExportStateEnd) | "all" %in% RunOptions$Outputs_Sim) {
OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]),
OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]),
list(RESULTS$StateEnd))
names(OutputsModel) <- c("DatesR", FortranOutputs[IndOutputs], "StateEnd")
}
......
RunModel_GR2M <- function(InputsModel,RunOptions,Param){
NParam <- 2;
FortranOutputs <- .FortranOutputs(GR = "GR2M")$GR
##Arguments_check
if(inherits(InputsModel,"InputsModel")==FALSE){ stop("'InputsModel' must be of class 'InputsModel'") }
if(inherits(InputsModel,"monthly" )==FALSE){ stop("'InputsModel' must be of class 'monthly' ") }
if(inherits(InputsModel,"GR" )==FALSE){ stop("'InputsModel' must be of class 'GR' ") }
if(inherits(RunOptions,"RunOptions" )==FALSE){ stop("'RunOptions' must be of class 'RunOptions' ") }
if(inherits(RunOptions,"GR" )==FALSE){ stop("'RunOptions' must be of class 'GR' ") }
if(!is.vector(Param) | !is.numeric(Param)){ stop("'Param' must be a numeric vector") }
if(sum(!is.na(Param))!=NParam){ stop(paste("'Param' must be a vector of length ",NParam," and contain no NA",sep="")) }
Param <- as.double(Param);
Param_X1X2_threshold <- 1e-2
if (Param[1L] < Param_X1X2_threshold) {
warning(sprintf("Param[1] (X1: production store capacity [mm]) < %.2f\n X1 set to %.2f", Param_X1X2_threshold, Param_X1X2_threshold))
Param[1L] <- Param_X1X2_threshold
}
if (Param[2L] < Param_X1X2_threshold) {
warning(sprintf("Param[2] (X2: routing store capacity [mm]) < %.2f\n X2 set to %.2f", Param_X1X2_threshold, Param_X1X2_threshold))
Param[2L] <- Param_X1X2_threshold
}
##Input_data_preparation
if(identical(RunOptions$IndPeriod_WarmUp,as.integer(0))){ RunOptions$IndPeriod_WarmUp <- NULL; }
IndPeriod1 <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run);
LInputSeries <- as.integer(length(IndPeriod1))
if("all" %in% RunOptions$Outputs_Sim){ IndOutputs <- as.integer(1:length(FortranOutputs));
} else { IndOutputs <- which(FortranOutputs %in% RunOptions$Outputs_Sim); }
##Output_data_preparation
IndPeriod2 <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries;
ExportDatesR <- "DatesR" %in% RunOptions$Outputs_Sim;
ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim;
##Use_of_IniResLevels
if(!is.null(RunOptions$IniResLevels)){
RunOptions$IniStates[1] <- RunOptions$IniResLevels[1]*Param[1]; ### production store level (mm)
RunOptions$IniStates[2] <- RunOptions$IniResLevels[2]*Param[2]; ### routing store level (mm)
}
##Call_fortan
RESULTS <- .Fortran("frun_gr2M",PACKAGE="airGR",
##inputs
LInputs=LInputSeries, ### length of input and output series
InputsPrecip=InputsModel$Precip[IndPeriod1], ### input series of total precipitation [mm/month]
InputsPE=InputsModel$PotEvap[IndPeriod1], ### input series potential evapotranspiration [mm/month]
NParam=as.integer(length(Param)), ### number of model parameter
Param=Param, ### parameter set
NStates=as.integer(length(RunOptions$IniStates)), ### number of state variables used for model initialising
StateStart=RunOptions$IniStates, ### state variables used when the model run starts
NOutputs=as.integer(length(IndOutputs)), ### number of output series
IndOutputs=IndOutputs, ### indices of output series
##outputs
Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputs)), ### output series [mm]
StateEnd=rep(as.double(-999.999),length(RunOptions$IniStates)) ### state variables at the end of the model run
)
RESULTS$Outputs [round(RESULTS$Outputs ,3)==(-999.999)] <- NA;
RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA;
if (ExportStateEnd) {
RESULTS$StateEnd <- CreateIniStates(FUN_MOD = RunModel_GR2M, InputsModel = InputsModel,
ProdStore = RESULTS$StateEnd[1L], RoutStore = RESULTS$StateEnd[2L], ExpStore = NULL,
UH1 = NULL, UH2 = NULL,
GCemaNeigeLayers = NULL, eTGCemaNeigeLayers = NULL,
verbose = FALSE)
}
##Output_data_preparation
##OutputsModel_only
if(ExportDatesR==FALSE & ExportStateEnd==FALSE){
OutputsModel <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]);
names(OutputsModel) <- FortranOutputs[IndOutputs]; }
##DatesR_and_OutputsModel_only
if(ExportDatesR==TRUE & ExportStateEnd==FALSE){
OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]) );
names(OutputsModel) <- c("DatesR",FortranOutputs[IndOutputs]); }
##OutputsModel_and_SateEnd_only
if(ExportDatesR==FALSE & ExportStateEnd==TRUE){
OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
list(RESULTS$StateEnd) );
names(OutputsModel) <- c(FortranOutputs[IndOutputs],"StateEnd"); }
##DatesR_and_OutputsModel_and_SateEnd
if((ExportDatesR==TRUE & ExportStateEnd==TRUE) | "all" %in% RunOptions$Outputs_Sim){
OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
list(RESULTS$StateEnd) );
names(OutputsModel) <- c("DatesR",FortranOutputs[IndOutputs],"StateEnd"); }
##End
rm(RESULTS);
class(OutputsModel) <- c("OutputsModel","monthly","GR");
return(OutputsModel);
RunModel_GR2M <- function(InputsModel, RunOptions, Param) {
## Initialization of variables
NParam <- 2
FortranOutputs <- .FortranOutputs(GR = "GR2M")$GR
## Arguments check
if (!inherits(InputsModel, "InputsModel")) {
stop("'InputsModel' must be of class 'InputsModel'")
}
if (!inherits(InputsModel, "monthly" )) {
stop("'InputsModel' must be of class 'monthly' ")
}
if (!inherits(InputsModel, "GR" )) {
stop("'InputsModel' must be of class 'GR' ")
}
if (!inherits(RunOptions, "RunOptions" )) {
stop("'RunOptions' must be of class 'RunOptions' ")
}
if (!inherits(RunOptions, "GR" )) {
stop("'RunOptions' must be of class 'GR' ")
}
if (!is.vector(Param) | !is.numeric(Param)) {
stop("'Param' must be a numeric vector")
}
if (sum(!is.na(Param)) != NParam) {
stop(paste("'Param' must be a vector of length ", NParam, " and contain no NA", sep = ""))
}
Param <- as.double(Param)
Param_X1X2_threshold <- 1e-2
if (Param[1L] < Param_X1X2_threshold) {
warning(sprintf("Param[1] (X1: production store capacity [mm]) < %.2f\n X1 set to %.2f", Param_X1X2_threshold, Param_X1X2_threshold))
Param[1L] <- Param_X1X2_threshold
}
if (Param[2L] < Param_X1X2_threshold) {
warning(sprintf("Param[2] (X2: routing store capacity [mm]) < %.2f\n X2 set to %.2f", Param_X1X2_threshold, Param_X1X2_threshold))
Param[2L] <- Param_X1X2_threshold
}
## Input data preparation
if (identical(RunOptions$IndPeriod_WarmUp, 0L)) {
RunOptions$IndPeriod_WarmUp <- NULL
}
IndPeriod1 <- c(RunOptions$IndPeriod_WarmUp, RunOptions$IndPeriod_Run)
LInputSeries <- as.integer(length(IndPeriod1))
if ("all" %in% RunOptions$Outputs_Sim) {
IndOutputs <- as.integer(1:length(FortranOutputs))
} else {
IndOutputs <- which(FortranOutputs %in% RunOptions$Outputs_Sim)
}
## Output data preparation
IndPeriod2 <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries
ExportDatesR <- "DatesR" %in% RunOptions$Outputs_Sim
ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim
## Use of IniResLevels
if (!is.null(RunOptions$IniResLevels)) {
RunOptions$IniStates[1] <- RunOptions$IniResLevels[1]*Param[1] ### production store level (mm)
RunOptions$IniStates[2] <- RunOptions$IniResLevels[2]*Param[2] ### routing store level (mm)
}
## Call GR model Fortan
RESULTS <- .Fortran("frun_gr2M", PACKAGE = "airGR",
## inputs
LInputs = LInputSeries, ### length of input and output series
InputsPrecip = InputsModel$Precip[IndPeriod1], ### input series of total precipitation [mm/month]
InputsPE = InputsModel$PotEvap[IndPeriod1], ### input series potential evapotranspiration [mm/month]
NParam = as.integer(length(Param)), ### number of model parameter
Param = Param, ### parameter set
NStates = as.integer(length(RunOptions$IniStates)), ### number of state variables used for model initialising
StateStart = RunOptions$IniStates, ### state variables used when the model run starts
NOutputs = as.integer(length(IndOutputs)), ### number of output series
IndOutputs = IndOutputs, ### indices of output series
## outputs
Outputs = matrix(as.double(-999.999), nrow = LInputSeries, ncol = length(IndOutputs)), ### output series [mm]
StateEnd = rep(as.double(-999.999), length(RunOptions$IniStates)) ### state variables at the end of the model run
)
RESULTS$Outputs [round(RESULTS$Outputs , 3) == -999.999] <- NA
RESULTS$StateEnd[round(RESULTS$StateEnd, 3) == -999.999] <- NA
if (ExportStateEnd) {
RESULTS$StateEnd <- CreateIniStates(FUN_MOD = RunModel_GR2M, InputsModel = InputsModel,
ProdStore = RESULTS$StateEnd[1L], RoutStore = RESULTS$StateEnd[2L], ExpStore = NULL,
UH1 = NULL, UH2 = NULL,
GCemaNeigeLayers = NULL, eTGCemaNeigeLayers = NULL,
verbose = FALSE)
}
## Output data preparation
## OutputsModel only
if (!ExportDatesR & !ExportStateEnd) {
OutputsModel <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i])
names(OutputsModel) <- FortranOutputs[IndOutputs]
}
## DatesR and OutputsModel only
if (ExportDatesR & !ExportStateEnd) {
OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]))
names(OutputsModel) <- c("DatesR", FortranOutputs[IndOutputs])
}
## OutputsModel and SateEnd only
if (!ExportDatesR & ExportStateEnd) {
OutputsModel <- c(lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]),
list(RESULTS$StateEnd))
names(OutputsModel) <- c(FortranOutputs[IndOutputs], "StateEnd")
}
## DatesR and OutputsModel and SateEnd
if ((ExportDatesR & ExportStateEnd) | "all" %in% RunOptions$Outputs_Sim) {
OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]),
list(RESULTS$StateEnd))
names(OutputsModel) <- c("DatesR", FortranOutputs[IndOutputs], "StateEnd")
}
## End
rm(RESULTS)
class(OutputsModel) <- c("OutputsModel", "monthly", "GR")
return(OutputsModel)
}
RunModel_GR4H <- function(InputsModel,RunOptions,Param){
NParam <- 4;
FortranOutputs <- .FortranOutputs(GR = "GR4H")$GR
##Arguments_check
if(inherits(InputsModel,"InputsModel")==FALSE){ stop("'InputsModel' must be of class 'InputsModel'") }
if(inherits(InputsModel,"hourly" )==FALSE){ stop("'InputsModel' must be of class 'hourly' ") }
if(inherits(InputsModel,"GR" )==FALSE){ stop("'InputsModel' must be of class 'GR' ") }
if(inherits(RunOptions,"RunOptions" )==FALSE){ stop("'RunOptions' must be of class 'RunOptions' ") }
if(inherits(RunOptions,"GR" )==FALSE){ stop("'RunOptions' must be of class 'GR' ") }
if(!is.vector(Param) | !is.numeric(Param)){ stop("'Param' must be a numeric vector") }
if(sum(!is.na(Param))!=NParam){ stop(paste("'Param' must be a vector of length ",NParam," and contain no NA",sep="")) }
Param <- as.double(Param);
Param_X1X3_threshold <- 1e-2
Param_X4_threshold <- 0.5
if (Param[1L] < Param_X1X3_threshold) {
warning(sprintf("Param[1] (X1: production store capacity [mm]) < %.2f\n X1 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold))
Param[1L] <- Param_X1X3_threshold
}
if (Param[3L] < Param_X1X3_threshold) {
warning(sprintf("Param[3] (X3: routing store capacity [mm]) < %.2f\n X3 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold))
Param[3L] <- Param_X1X3_threshold
}
if (Param[4L] < Param_X4_threshold) {
warning(sprintf("Param[4] (X4: unit hydrograph time constant [h]) < %.2f\n X4 set to %.2f", Param_X4_threshold, Param_X4_threshold))
Param[4L] <- Param_X4_threshold
}
##Input_data_preparation
if(identical(RunOptions$IndPeriod_WarmUp,as.integer(0))){ RunOptions$IndPeriod_WarmUp <- NULL; }
IndPeriod1 <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run);
LInputSeries <- as.integer(length(IndPeriod1))
if("all" %in% RunOptions$Outputs_Sim){ IndOutputs <- as.integer(1:length(FortranOutputs));
} else { IndOutputs <- which(FortranOutputs %in% RunOptions$Outputs_Sim); }
##Output_data_preparation
IndPeriod2 <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries;
ExportDatesR <- "DatesR" %in% RunOptions$Outputs_Sim;
ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim;
##Use_of_IniResLevels
if(!is.null(RunOptions$IniResLevels)){
RunOptions$IniStates[1] <- RunOptions$IniResLevels[1]*Param[1]; ### production store level (mm)
RunOptions$IniStates[2] <- RunOptions$IniResLevels[2]*Param[3]; ### routing store level (mm)
}
##Call_fortan
RESULTS <- .Fortran("frun_gr4h",PACKAGE="airGR",
##inputs
LInputs=LInputSeries, ### length of input and output series
InputsPrecip=InputsModel$Precip[IndPeriod1], ### input series of total precipitation [mm/h]
InputsPE=InputsModel$PotEvap[IndPeriod1], ### input series potential evapotranspiration [mm/h]
NParam=as.integer(length(Param)), ### number of model parameter
Param=Param, ### parameter set
NStates=as.integer(length(RunOptions$IniStates)), ### number of state variables used for model initialising
StateStart=RunOptions$IniStates, ### state variables used when the model run starts
NOutputs=as.integer(length(IndOutputs)), ### number of output series
IndOutputs=IndOutputs, ### indices of output series
##outputs
Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputs)), ### output series [mm]
StateEnd=rep(as.double(-999.999),length(RunOptions$IniStates)) ### state variables at the end of the model run
)
RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA;
RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA;
if (ExportStateEnd) {
RESULTS$StateEnd[-3L] <- ifelse(RESULTS$StateEnd[-3L] < 0, 0, RESULTS$StateEnd[-3L]) ### remove negative values except for the ExpStore location
RESULTS$StateEnd <- CreateIniStates(FUN_MOD = RunModel_GR4H, InputsModel = InputsModel,
ProdStore = RESULTS$StateEnd[1L], RoutStore = RESULTS$StateEnd[2L], ExpStore = NULL,
UH1 = RESULTS$StateEnd[(1:(20*24))+7], UH2 = RESULTS$StateEnd[(1:(40*24))+(7+20*24)],
GCemaNeigeLayers = NULL, eTGCemaNeigeLayers = NULL,
verbose = FALSE)
}
##Output_data_preparation
##OutputsModel_only
if(ExportDatesR==FALSE & ExportStateEnd==FALSE){
OutputsModel <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]);
names(OutputsModel) <- FortranOutputs[IndOutputs]; }
##DatesR_and_OutputsModel_only
if(ExportDatesR==TRUE & ExportStateEnd==FALSE){
OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]) );
names(OutputsModel) <- c("DatesR",FortranOutputs[IndOutputs]); }
##OutputsModel_and_SateEnd_only
if(ExportDatesR==FALSE & ExportStateEnd==TRUE){
OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
list(RESULTS$StateEnd) );
names(OutputsModel) <- c(FortranOutputs[IndOutputs],"StateEnd"); }
##DatesR_and_OutputsModel_and_SateEnd
if((ExportDatesR==TRUE & ExportStateEnd==TRUE) | "all" %in% RunOptions$Outputs_Sim){
OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
list(RESULTS$StateEnd) );
names(OutputsModel) <- c("DatesR",FortranOutputs[IndOutputs],"StateEnd"); }
##End
rm(RESULTS);
class(OutputsModel) <- c("OutputsModel","hourly","GR");
return(OutputsModel);
RunModel_GR4H <- function(InputsModel, RunOptions, Param) {
## Initialization of variables
NParam <- 4
FortranOutputs <- .FortranOutputs(GR = "GR4H")$GR
## Arguments check
if (!inherits(InputsModel, "InputsModel")) {
stop("'InputsModel' must be of class 'InputsModel'")
}
if (!inherits(InputsModel, "hourly" )) {
stop("'InputsModel' must be of class 'hourly' ")
}
if (!inherits(InputsModel, "GR" )) {
stop("'InputsModel' must be of class 'GR' ")
}
if (!inherits(RunOptions, "RunOptions" )) {
stop("'RunOptions' must be of class 'RunOptions' ")
}
if (!inherits(RunOptions, "GR" )) {
stop("'RunOptions' must be of class 'GR' ")
}
if (!is.vector(Param) | !is.numeric(Param)) {
stop("'Param' must be a numeric vector")
}
if (sum(!is.na(Param)) != NParam) {
stop(paste("'Param' must be a vector of length ", NParam, " and contain no NA", sep = ""))
}
Param <- as.double(Param)
Param_X1X3_threshold <- 1e-2
Param_X4_threshold <- 0.5
if (Param[1L] < Param_X1X3_threshold) {
warning(sprintf("Param[1] (X1: production store capacity [mm]) < %.2f\n X1 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold))
Param[1L] <- Param_X1X3_threshold
}
if (Param[3L] < Param_X1X3_threshold) {
warning(sprintf("Param[3] (X3: routing store capacity [mm]) < %.2f\n X3 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold))
Param[3L] <- Param_X1X3_threshold
}
if (Param[4L] < Param_X4_threshold) {
warning(sprintf("Param[4] (X4: unit hydrograph time constant [h]) < %.2f\n X4 set to %.2f", Param_X4_threshold, Param_X4_threshold))
Param[4L] <- Param_X4_threshold
}
## Input data preparation
if (identical(RunOptions$IndPeriod_WarmUp, 0L)) {
RunOptions$IndPeriod_WarmUp <- NULL
}
IndPeriod1 <- c(RunOptions$IndPeriod_WarmUp, RunOptions$IndPeriod_Run)
LInputSeries <- as.integer(length(IndPeriod1))
if ("all" %in% RunOptions$Outputs_Sim) {
IndOutputs <- as.integer(1:length(FortranOutputs))
} else {
IndOutputs <- which(FortranOutputs %in% RunOptions$Outputs_Sim)
}
## Output data preparation
IndPeriod2 <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries
ExportDatesR <- "DatesR" %in% RunOptions$Outputs_Sim
ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim
## Use of IniResLevels
if (!is.null(RunOptions$IniResLevels)) {
RunOptions$IniStates[1] <- RunOptions$IniResLevels[1]*Param[1] ### production store level (mm)
RunOptions$IniStates[2] <- RunOptions$IniResLevels[2]*Param[3] ### routing store level (mm)
}
## Call GR model Fortan
RESULTS <- .Fortran("frun_gr4h", PACKAGE = "airGR",
## inputs
LInputs = LInputSeries, ### length of input and output series
InputsPrecip = InputsModel$Precip[IndPeriod1], ### input series of total precipitation [mm/h]
InputsPE = InputsModel$PotEvap[IndPeriod1], ### input series potential evapotranspiration [mm/h]
NParam = as.integer(length(Param)), ### number of model parameter
Param = Param, ### parameter set
NStates = as.integer(length(RunOptions$IniStates)), ### number of state variables used for model initialising
StateStart = RunOptions$IniStates, ### state variables used when the model run starts
NOutputs = as.integer(length(IndOutputs)), ### number of output series
IndOutputs = IndOutputs, ### indices of output series
## outputs
Outputs = matrix(as.double(-999.999), nrow = LInputSeries, ncol = length(IndOutputs)), ### output series [mm]
StateEnd = rep(as.double(-999.999), length(RunOptions$IniStates)) ### state variables at the end of the model run
)
RESULTS$Outputs[ round(RESULTS$Outputs , 3) == -999.999] <- NA
RESULTS$StateEnd[round(RESULTS$StateEnd, 3) == -999.999] <- NA
if (ExportStateEnd) {
RESULTS$StateEnd[-3L] <- ifelse(RESULTS