Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
RunModel_CemaNeigeGR4H <- function(InputsModel,RunOptions,Param){
## Initialization of variables
IsHyst <- inherits(RunOptions, "hysteresis")
NParam <- ifelse(test = IsHyst, yes = 8L, no = 6L)
NStates <- 4L
FortranOutputs <- .FortranOutputs(GR = "GR4H", isCN = TRUE)
##Arguments_check
if(!inherits(InputsModel,"InputsModel")){ stop("'InputsModel' must be of class 'InputsModel'") }
if(!inherits(InputsModel,"hourly" )){ stop("'InputsModel' must be of class 'hourly' ") }
if(!inherits(InputsModel,"GR" )){ stop("'InputsModel' must be of class 'GR' ") }
if(!inherits(InputsModel,"CemaNeige" )){ stop("'InputsModel' must be of class 'CemaNeige' ") }
if(!inherits(RunOptions,"RunOptions" )){ stop("'RunOptions' must be of class 'RunOptions' ") }
if(!inherits(RunOptions,"GR" )){ stop("'RunOptions' must be of class 'GR' ") }
if(!inherits(RunOptions,"CemaNeige" )){ stop("'RunOptions' must be of class 'CemaNeige' ") }
if(!is.vector(Param) | !is.numeric(Param)){ stop("'Param' must be a numeric vector") }
if(sum(!is.na(Param))!=NParam){ stop(paste("'Param' must be a vector of length ",NParam," and contain no NA",sep="")) }
Param <- as.double(Param);
Param_X1X3_threshold <- 1e-2
Param_X4_threshold <- 0.5
if (Param[1L] < Param_X1X3_threshold) {
warning(sprintf("Param[1] (X1: production store capacity [mm]) < %.2f\n X1 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold))
Param[1L] <- Param_X1X3_threshold
}
if (Param[3L] < Param_X1X3_threshold) {
warning(sprintf("Param[3] (X3: routing store capacity [mm]) < %.2f\n X3 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold))
Param[3L] <- Param_X1X3_threshold
}
if (Param[4L] < Param_X4_threshold) {
warning(sprintf("Param[4] (X4: unit hydrograph time constant [d]) < %.2f\n X4 set to %.2f", Param_X4_threshold, Param_X4_threshold))
Param[4L] <- Param_X4_threshold
}
##Input_data_preparation
if(identical(RunOptions$IndPeriod_WarmUp,as.integer(0))){ RunOptions$IndPeriod_WarmUp <- NULL; }
IndPeriod1 <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run);
LInputSeries <- as.integer(length(IndPeriod1))
IndPeriod2 <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries;
ParamCemaNeige <- Param[(length(Param)-1-2*as.integer(IsHyst)):length(Param)];
NParamMod <- as.integer(length(Param)-(2+2*as.integer(IsHyst)));
ParamMod <- Param[1:NParamMod];
NLayers <- length(InputsModel$LayerPrecip);
NStatesMod <- as.integer(length(RunOptions$IniStates)-NStates*NLayers);
ExportDatesR <- "DatesR" %in% RunOptions$Outputs_Sim;
ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim;
##SNOW_MODULE________________________________________________________________________________##
if(inherits(RunOptions,"CemaNeige")){
if("all" %in% RunOptions$Outputs_Sim){ IndOutputsCemaNeige <- as.integer(1:length(FortranOutputs$CN));
} else { IndOutputsCemaNeige <- which(FortranOutputs$CN %in% RunOptions$Outputs_Sim); }
CemaNeigeLayers <- list(); CemaNeigeStateEnd <- NULL; NameCemaNeigeLayers <- "CemaNeigeLayers";
##Call_DLL_CemaNeige_________________________
for(iLayer in 1:NLayers){
if (!IsHyst) {
StateStartCemaNeige <- RunOptions$IniStates[(7 + 20*24 + 40*24) + c(iLayer, iLayer+NLayers)]
StateStartCemaNeige <- RunOptions$IniStates[(7 + 20*24 + 40*24) + c(iLayer, iLayer+NLayers, iLayer+2*NLayers, iLayer+3*NLayers)]
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
}
RESULTS <- .Fortran("frun_CemaNeige",PACKAGE="airGR",
##inputs
LInputs=LInputSeries, ### length of input and output series
InputsPrecip=InputsModel$LayerPrecip[[iLayer]][IndPeriod1], ### input series of total precipitation [mm/h]
InputsFracSolidPrecip=InputsModel$LayerFracSolidPrecip[[iLayer]][IndPeriod1], ### input series of fraction of solid precipitation [0-1]
InputsTemp=InputsModel$LayerTemp[[iLayer]][IndPeriod1], ### input series of air mean temperature [degC]
MeanAnSolidPrecip=RunOptions$MeanAnSolidPrecip[iLayer], ### value of annual mean solid precip [mm/y]
NParam=as.integer(NParam), ### number of model parameter = 2
Param=as.double(ParamCemaNeige), ### parameter set
NStates=as.integer(NStates), ### number of state variables used for model initialising = 2
StateStart=StateStartCemaNeige, ### state variables used when the model run starts
IsHyst = as.integer(IsHyst), ### use of hysteresis
NOutputs=as.integer(length(IndOutputsCemaNeige)), ### number of output series
IndOutputs=IndOutputsCemaNeige, ### indices of output series
##outputs
Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputsCemaNeige)), ### output series [mm]
StateEnd=rep(as.double(-999.999),as.integer(NStates)) ### state variables at the end of the model run (reservoir levels [mm] and HU)
)
RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA;
RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA;
##Data_storage
CemaNeigeLayers[[iLayer]] <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]);
names(CemaNeigeLayers[[iLayer]]) <- FortranOutputs$CN[IndOutputsCemaNeige];
IndPliqAndMelt <- which(names(CemaNeigeLayers[[iLayer]]) == "PliqAndMelt");
if(iLayer==1){ CatchMeltAndPliq <- RESULTS$Outputs[,IndPliqAndMelt]/NLayers; }
if(iLayer >1){ CatchMeltAndPliq <- CatchMeltAndPliq + RESULTS$Outputs[,IndPliqAndMelt]/NLayers; }
if(ExportStateEnd){ CemaNeigeStateEnd <- c(CemaNeigeStateEnd,RESULTS$StateEnd); }
rm(RESULTS);
} ###ENDFOR_iLayer
names(CemaNeigeLayers) <- sprintf("Layer%02i", seq_len(NLayers))
} ###ENDIF_RunSnowModule
if(!inherits(RunOptions,"CemaNeige")){
CemaNeigeLayers <- list(); CemaNeigeStateEnd <- NULL; NameCemaNeigeLayers <- NULL;
CatchMeltAndPliq <- InputsModel$Precip[IndPeriod1]; }
##MODEL______________________________________________________________________________________##
if("all" %in% RunOptions$Outputs_Sim){ IndOutputsMod <- as.integer(1:length(FortranOutputs$GR));
} else { IndOutputsMod <- which(FortranOutputs$GR %in% RunOptions$Outputs_Sim); }
##Use_of_IniResLevels
if(!is.null(RunOptions$IniResLevels)){
RunOptions$IniStates[1] <- RunOptions$IniResLevels[1]*ParamMod[1]; ### production store level (mm)
RunOptions$IniStates[2] <- RunOptions$IniResLevels[2]*ParamMod[3]; ### routing store level (mm)
}
##Call_fortan
RESULTS <- .Fortran("frun_GR4H",PACKAGE="airGR",
##inputs
LInputs=LInputSeries, ### length of input and output series
InputsPrecip=CatchMeltAndPliq, ### input series of total precipitation [mm/h]
InputsPE=InputsModel$PotEvap[IndPeriod1], ### input series potential evapotranspiration [mm/h]
NParam=NParamMod, ### number of model parameter
Param=ParamMod, ### parameter set
NStates=NStatesMod, ### number of state variables used for model initialising
StateStart=RunOptions$IniStates[1:NStatesMod], ### state variables used when the model run starts
NOutputs=as.integer(length(IndOutputsMod)), ### number of output series
IndOutputs=IndOutputsMod, ### indices of output series
##outputs
Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputsMod)), ### output series [mm]
StateEnd=rep(as.double(-999.999),NStatesMod) ### state variables at the end of the model run
)
RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA;
RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA;
if (ExportStateEnd) {
idNStates <- seq_len(NStates*NLayers) %% NStates
Delaigue Olivier
committed
RESULTS$StateEnd <- CreateIniStates(FUN_MOD = RunModel_CemaNeigeGR4H, InputsModel = InputsModel, IsHyst = IsHyst,
ProdStore = RESULTS$StateEnd[1L], RoutStore = RESULTS$StateEnd[2L], ExpStore = NULL,
Delaigue Olivier
committed
UH1 = RESULTS$StateEnd[(1:(20*24))+7], UH2 = RESULTS$StateEnd[(1:(40*24))+(7+20*24)],
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
GCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 3]],
eTGCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 2]],
GthrCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 1]],
GlocmaxCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 0]],
verbose = FALSE)
}
if(inherits(RunOptions,"CemaNeige") & "Precip" %in% RunOptions$Outputs_Sim){ RESULTS$Outputs[,which(FortranOutputs$GR[IndOutputsMod]=="Precip")] <- InputsModel$Precip[IndPeriod1]; }
##Output_data_preparation
##OutputsModel_only
if(!ExportDatesR & !ExportStateEnd){
OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
list(CemaNeigeLayers) );
names(OutputsModel) <- c(FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers); }
##DatesR_and_OutputsModel_only
if( ExportDatesR & !ExportStateEnd){
OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
list(CemaNeigeLayers) );
names(OutputsModel) <- c("DatesR",FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers); }
##OutputsModel_and_SateEnd_only
if(!ExportDatesR & ExportStateEnd){
OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
list(CemaNeigeLayers),
list(RESULTS$StateEnd) );
names(OutputsModel) <- c(FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers,"StateEnd"); }
##DatesR_and_OutputsModel_and_SateEnd
if( ExportDatesR & ExportStateEnd){
OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
list(CemaNeigeLayers),
list(RESULTS$StateEnd) );
names(OutputsModel) <- c("DatesR",FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers,"StateEnd"); }
##End
rm(RESULTS);
class(OutputsModel) <- c("OutputsModel","hourly","GR","CemaNeige");
if(IsHyst) {
class(OutputsModel) <- c(class(OutputsModel), "hysteresis")
}
return(OutputsModel);
}