Forked from HYCAR-Hydro / airGR
Source project has a limited visibility.
RunModel_CemaNeigeGR5J.Rd 10.04 KiB
\encoding{UTF-8}
\name{RunModel_CemaNeigeGR5J}
\alias{RunModel_CemaNeigeGR5J}
\title{Run with the CemaNeigeGR5J hydrological model}
\usage{
RunModel_CemaNeigeGR5J(InputsModel, RunOptions, Param)
\arguments{
\item{InputsModel}{[object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details}
\item{RunOptions}{[object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details}
\item{Param}{[numeric] vector of 7 (or 9 parameters if \code{IsHyst = TRUE})
\tabular{ll}{                                                                      
GR5J X1      \tab production store capacity [mm]                                          \cr
GR5J X2      \tab intercatchment exchange coefficient [mm/d]                              \cr
GR5J X3      \tab routing store capacity [mm]                                             \cr
GR5J X4      \tab unit hydrograph time constant [d]                                       \cr
GR5J X5      \tab intercatchment exchange threshold [-]                                   \cr
CemaNeige X1 \tab weighting coefficient for snow pack thermal state [-]                   \cr
CemaNeige X2 \tab degree-day melt coefficient [mm/°C/d]                                   \cr
CemaNeige X3 \tab (optional) accumulation threshold [mm] (needed if \code{IsHyst = TRUE}) \cr
CemaNeige X4 \tab (optional) percentage (between 0 and 1) of annual snowfall defining the melt threshold [-] (needed if \code{IsHyst = TRUE}) \cr
\value{
[list] list containing the function outputs organised as follows:                                         
  \tabular{ll}{                                                                                         
    \emph{$DatesR  }          \tab [POSIXlt] series of dates                                                     \cr
    \emph{$PotEvap }          \tab [numeric] series of input potential evapotranspiration [mm/d]                 \cr
    \emph{$Precip  }          \tab [numeric] series of input total precipitation [mm/d]                          \cr
    \emph{$Prod    }          \tab [numeric] series of production store level [mm]                               \cr
    \emph{$Pn      }          \tab [numeric] series of net rainfall [mm/d]                         			         \cr
    \emph{$Ps      }          \tab [numeric] series of the part of Pn filling the production store [mm/d]        \cr
    \emph{$AE      }          \tab [numeric] series of actual evapotranspiration [mm/d]                          \cr
    \emph{$Perc    }          \tab [numeric] series of percolation (PERC) [mm/d]                                 \cr
    \emph{$PR      }          \tab [numeric] series of PR=Pn-Ps+Perc [mm/d]                                      \cr
    \emph{$Q9      }          \tab [numeric] series of UH1 outflow (Q9) [mm/d]                                   \cr
    \emph{$Q1      }          \tab [numeric] series of UH2 outflow (Q1) [mm/d]                                   \cr
    \emph{$Rout    }          \tab [numeric] series of routing store level [mm]                                  \cr
    \emph{$Exch    }          \tab [numeric] series of potential semi-exchange between catchments [mm/d]         \cr
    \emph{$AExch1  }          \tab [numeric] series of actual exchange between catchments for branch 1 [mm/d]    \cr
    \emph{$AExch2  }          \tab [numeric] series of actual exchange between catchments for branch 2 [mm/d]    \cr
    \emph{$AExch   }          \tab [numeric] series of actual exchange between catchments (1+2) [mm/d]           \cr
    \emph{$QR      }          \tab [numeric] series of routing store outflow (QR) [mm/d]                         \cr
    \emph{$QD      }          \tab [numeric] series of direct flow from UH2 after exchange (QD) [mm/d]           \cr
    \emph{$Qsim    }          \tab [numeric] series of simulated discharge [mm/d]                                \cr
    \emph{$CemaNeigeLayers}   \tab [list] list of CemaNeige outputs (1 list per layer)                           \cr
    \emph{$CemaNeigeLayers[[iLayer]]$Pliq         } \tab [numeric] series of liquid precip. [mm/d]                    \cr
    \emph{$CemaNeigeLayers[[iLayer]]$Psol         } \tab [numeric] series of solid precip. [mm/d]                     \cr
    \emph{$CemaNeigeLayers[[iLayer]]$SnowPack     } \tab [numeric] series of snow pack [mm]                           \cr
    \emph{$CemaNeigeLayers[[iLayer]]$ThermalState } \tab [numeric] series of snow pack thermal state [°C]             \cr
    \emph{$CemaNeigeLayers[[iLayer]]$Gratio       } \tab [numeric] series of Gratio [0-1]                             \cr
    \emph{$CemaNeigeLayers[[iLayer]]$PotMelt      } \tab [numeric] series of potential snow melt [mm/d]               \cr
    \emph{$CemaNeigeLayers[[iLayer]]$Melt         } \tab [numeric] series of actual snow melt [mm/d]                  \cr
    \emph{$CemaNeigeLayers[[iLayer]]$PliqAndMelt  } \tab [numeric] series of liquid precip. + actual snow melt [mm/d] \cr
    \emph{$CemaNeigeLayers[[iLayer]]$Temp         } \tab [numeric] series of air temperature [°C]                     \cr
    \emph{$CemaNeigeLayers[[iLayer]]$Gthreshold   } \tab [numeric] series of melt threshold [mm]                      \cr
    \emph{$CemaNeigeLayers[[iLayer]]$Glocalmax    } \tab [numeric] series of local melt threshold for hysteresis [mm] \cr
    \emph{$StateEnd}                                \tab [numeric] states at the end of the run: \cr\tab store & unit hydrographs levels [mm], CemaNeige states [mm & °C], \cr\tab see \code{\link{CreateIniStates}} for more details                                 \cr
7172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
} (refer to the provided references or to the package source code for further details on these model outputs) } \description{ Function which performs a single run for the CemaNeige-GR5J daily lumped model. } \details{ The choice of the CemaNeige version is explained in \code{\link{CreateRunOptions}}. \cr For further details on the model, see the references section. \cr For further details on the argument structures and initialisation options, see \code{\link{CreateRunOptions}}. } \examples{ library(airGR) ## loading catchment data data(L0123002) ## preparation of the InputsModel object InputsModel <- CreateInputsModel(FUN_MOD = RunModel_CemaNeigeGR5J, DatesR = BasinObs$DatesR, Precip = BasinObs$P, PotEvap = BasinObs$E, TempMean = BasinObs$T, ZInputs = median(BasinInfo$HypsoData), HypsoData = BasinInfo$HypsoData, NLayers = 5) ## run period selection Ind_Run <- seq(which(format(BasinObs$DatesR, format = "\%Y-\%m-\%d")=="1990-01-01"), which(format(BasinObs$DatesR, format = "\%Y-\%m-\%d")=="1999-12-31")) ## preparation of the RunOptions object RunOptions <- CreateRunOptions(FUN_MOD = RunModel_CemaNeigeGR5J, InputsModel = InputsModel, IndPeriod_Run = Ind_Run) ## simulation Param <- c(X1 = 179.139, X2 = -0.100, X3 = 203.815, X4 = 1.174, X5 = 2.478, CNX1 = 0.977, CNX2 = 2.774) OutputsModel <- RunModel_CemaNeigeGR5J(InputsModel = InputsModel, RunOptions = RunOptions, Param = Param) ## results preview plot(OutputsModel, Qobs = BasinObs$Qmm[Ind_Run]) ## efficiency criterion: Nash-Sutcliffe Efficiency InputsCrit <- CreateInputsCrit(FUN_CRIT = ErrorCrit_NSE, InputsModel = InputsModel, RunOptions = RunOptions, Obs = BasinObs$Qmm[Ind_Run], varObs = "Q") OutputsCrit <- ErrorCrit_NSE(InputsCrit = InputsCrit, OutputsModel = OutputsModel) ## simulation with the Linear Hysteresis ## preparation of the RunOptions object RunOptions <- CreateRunOptions(FUN_MOD = RunModel_CemaNeigeGR5J, InputsModel = InputsModel, IndPeriod_Run = Ind_Run, IsHyst = TRUE) Param <- c(179.139, -0.100, 203.815, 1.174, 2.478, 0.977, 2.774, 100, 0.4) OutputsModel <- RunModel_CemaNeigeGR5J(InputsModel = InputsModel, RunOptions = RunOptions, Param = Param) ## results preview plot(OutputsModel, Qobs = BasinObs$Qmm[Ind_Run]) ## efficiency criterion: Nash-Sutcliffe Efficiency InputsCrit <- CreateInputsCrit(FUN_CRIT = ErrorCrit_NSE, InputsModel = InputsModel, RunOptions = RunOptions, Obs = BasinObs$Qmm[Ind_Run], varObs = "Q") OutputsCrit <- ErrorCrit_NSE(InputsCrit = InputsCrit, OutputsModel = OutputsModel) }
141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176
\author{ Laurent Coron, Audrey Valéry, Claude Michel, Nicolas Le Moine, Charles Perrin, Vazken Andréassian, Olivier Delaigue } \references{ Le Moine, N. (2008). Le bassin versant de surface vu par le souterrain : une voie d'amélioration des performances et du réalisme des modèles pluie-débit ? PhD thesis (french), UPMC, Paris, France. \cr\cr Pushpalatha, R., C. Perrin, N. Le Moine, T. Mathevet and V. Andréassian (2011). A downward structural sensitivity analysis of hydrological models to improve low-flow simulation. Journal of Hydrology, 411(1-2), 66-76. doi:10.1016/j.jhydrol.2011.09.034. \cr\cr Riboust, P., G. Thirel, N. Le Moine and P. Ribstein (2019). Revisiting a simple degree-day model for integrating satellite data: implementation of SWE-SCA hystereses. Journal of Hydrology and Hydromechanics. doi:10.2478/johh-2018-0004, 67, 1, 70–81. \cr\cr Valéry, A., V. Andréassian and C. Perrin (2014). "As simple as possible but not simpler": what is useful in a temperature-based snow-accounting routine? Part 1 - Comparison of six snow accounting routines on 380 catchments. Journal of Hydrology. doi:10.1016/j.jhydrol.2014.04.059. \cr\cr Valéry, A., V. Andréassian and C. Perrin (2014). "As simple as possible but not simpler": What is useful in a temperature-based snow-accounting routine? Part 2 - Sensitivity analysis of the Cemaneige snow accounting routine on 380 catchments. Journal of Hydrology. doi:10.1016/j.jhydrol.2014.04.058. } \seealso{ \code{\link{RunModel_CemaNeige}}, \code{\link{RunModel_CemaNeigeGR4J}}, \code{\link{RunModel_CemaNeigeGR6J}}, \code{\link{RunModel_GR5J}}, \code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}, \code{\link{CreateIniStates}}. }