Failed to fetch fork details. Try again later.
-
Delaigue Olivier authored
Refs #14
81fb0b6c
Forked from
HYCAR-Hydro / airGR
Source project has a limited visibility.
RunModel_CemaNeigeGR5H <- function(InputsModel, RunOptions, Param) {
## Initialization of variables
IsHyst <- inherits(RunOptions, "hysteresis")
NParam <- ifelse(test = IsHyst, yes = 9L, no = 7L)
NParamCN <- NParam - 5L
NStates <- 4L
FortranOutputs <- .FortranOutputs(GR = "GR5H", isCN = TRUE)
IsIntStore <- inherits(RunOptions, "interception")
if (IsIntStore) {
Imax <- RunOptions$Imax
} else {
Imax <- -99
}
## Arguments check
if (!inherits(InputsModel, "InputsModel")) {
stop("'InputsModel' must be of class 'InputsModel'")
}
if (!inherits(InputsModel, "hourly")) {
stop("'InputsModel' must be of class 'hourly'")
}
if (!inherits(InputsModel, "GR")) {
stop("'InputsModel' must be of class 'GR'")
}
if (!inherits(InputsModel, "CemaNeige")) {
stop("'InputsModel' must be of class 'CemaNeige'")
}
if (!inherits(RunOptions, "RunOptions")) {
stop("'RunOptions' must be of class 'RunOptions'")
}
if (!inherits(RunOptions, "GR")) {
stop("'RunOptions' must be of class 'GR'")
}
if (!inherits(RunOptions, "CemaNeige")) {
stop("'RunOptions' must be of class 'CemaNeige'")
}
if (!is.vector(Param) | !is.numeric(Param)) {
stop("'Param' must be a numeric vector")
}
if (sum(!is.na(Param)) != NParam) {
stop(paste("'Param' must be a vector of length", NParam, "and contain no NA"))
}
Param <- as.double(Param)
Param_X1X3_threshold <- 1e-2
Param_X4_threshold <- 0.5
if (Param[1L] < Param_X1X3_threshold) {
warning(sprintf("Param[1] (X1: production store capacity [mm]) < %.2f\n X1 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold))
Param[1L] <- Param_X1X3_threshold
}
if (Param[3L] < Param_X1X3_threshold) {
warning(sprintf("Param[3] (X3: routing store capacity [mm]) < %.2f\n X3 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold))
Param[3L] <- Param_X1X3_threshold
}
if (Param[4L] < Param_X4_threshold) {
warning(sprintf("Param[4] (X4: unit hydrograph time constant [h]) < %.2f\n X4 set to %.2f", Param_X4_threshold, Param_X4_threshold))
Param[4L] <- Param_X4_threshold
}
## Input data preparation
if (identical(RunOptions$IndPeriod_WarmUp, 0L)) {
RunOptions$IndPeriod_WarmUp <- NULL
}
IndPeriod1 <- c(RunOptions$IndPeriod_WarmUp, RunOptions$IndPeriod_Run)
LInputSeries <- as.integer(length(IndPeriod1))
7172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
if ("all" %in% RunOptions$Outputs_Sim) {
IndOutputsMod <- as.integer(1:length(FortranOutputs))
} else {
IndOutputsMod <- which(FortranOutputs %in% RunOptions$Outputs_Sim)
}
ParamCemaNeige <- Param[(length(Param) - 1 - 2 * as.integer(IsHyst)):length(Param)]
NParamMod <- as.integer(length(Param) - (2 + 2 * as.integer(IsHyst)))
ParamMod <- Param[1:NParamMod]
NLayers <- length(InputsModel$LayerPrecip)
NStatesMod <- as.integer(length(RunOptions$IniStates) - NStates * NLayers)
## Output data preparation
IndPeriod2 <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries
ExportDatesR <- "DatesR" %in% RunOptions$Outputs_Sim
ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim
## CemaNeige________________________________________________________________________________
if (inherits(RunOptions, "CemaNeige")) {
if ("all" %in% RunOptions$Outputs_Sim) {
IndOutputsCemaNeige <- as.integer(1:length(FortranOutputs$CN))
} else {
IndOutputsCemaNeige <- which(FortranOutputs$CN %in% RunOptions$Outputs_Sim)
}
CemaNeigeLayers <- list()
CemaNeigeStateEnd <- NULL
NameCemaNeigeLayers <- "CemaNeigeLayers"
## Call CemaNeige Fortran_________________________
for(iLayer in 1:NLayers) {
if (!IsHyst) {
StateStartCemaNeige <- RunOptions$IniStates[(7 + 20*24 + 40*24) + c(iLayer, iLayer+NLayers)]
} else {
StateStartCemaNeige <- RunOptions$IniStates[(7 + 20*24 + 40*24) + c(iLayer, iLayer+NLayers, iLayer+2*NLayers, iLayer+3*NLayers)]
}
RESULTS <- .Fortran("frun_cemaneige",PACKAGE="airGR",
## inputs
LInputs = LInputSeries, ### length of input and output series
InputsPrecip = InputsModel$LayerPrecip[[iLayer]][IndPeriod1], ### input series of total precipitation [mm/h]
InputsFracSolidPrecip = InputsModel$LayerFracSolidPrecip[[iLayer]][IndPeriod1], ### input series of fraction of solid precipitation [0-1]
InputsTemp = InputsModel$LayerTemp[[iLayer]][IndPeriod1], ### input series of air mean temperature [degC]
MeanAnSolidPrecip = RunOptions$MeanAnSolidPrecip[iLayer], ### value of annual mean solid precip [mm/y]
NParam = as.integer(NParamCN), ### number of model parameters = 2 or 4
Param = as.double(ParamCemaNeige), ### parameter set
NStates = as.integer(NStates), ### number of state variables used for model initialisation = 4
StateStart = StateStartCemaNeige, ### state variables used when the model run starts
IsHyst = as.integer(IsHyst), ### use of hysteresis
NOutputs = as.integer(length(IndOutputsCemaNeige)), ### number of output series
IndOutputs = IndOutputsCemaNeige, ### indices of output series
## outputs
Outputs = matrix(as.double(-999.999), nrow = LInputSeries, ncol = length(IndOutputsCemaNeige)), ### output series [mm]
StateEnd = rep(as.double(-999.999), as.integer(NStates)) ### state variables at the end of the model run
)
RESULTS$Outputs[ round(RESULTS$Outputs , 3) == -999.999] <- NA
RESULTS$StateEnd[round(RESULTS$StateEnd, 3) == -999.999] <- NA
## Data storage
CemaNeigeLayers[[iLayer]] <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i])
names(CemaNeigeLayers[[iLayer]]) <- FortranOutputs$CN[IndOutputsCemaNeige]
IndPliqAndMelt <- which(names(CemaNeigeLayers[[iLayer]]) == "PliqAndMelt")
if (iLayer == 1) {
CatchMeltAndPliq <- RESULTS$Outputs[, IndPliqAndMelt] / NLayers
}
if (iLayer > 1) {
CatchMeltAndPliq <- CatchMeltAndPliq + RESULTS$Outputs[, IndPliqAndMelt] / NLayers
}
if (ExportStateEnd) {
CemaNeigeStateEnd <- c(CemaNeigeStateEnd, RESULTS$StateEnd)
141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210
}
rm(RESULTS)
} ### ENDFOR iLayer
names(CemaNeigeLayers) <- sprintf("Layer%02i", seq_len(NLayers))
} ### ENDIF RunSnowModule
if (!inherits(RunOptions, "CemaNeige")) {
CemaNeigeLayers <- list()
CemaNeigeStateEnd <- NULL
NameCemaNeigeLayers <- NULL
CatchMeltAndPliq <- InputsModel$Precip[IndPeriod1]
}
## GR model______________________________________________________________________________________
if ("all" %in% RunOptions$Outputs_Sim) {
IndOutputsMod <- as.integer(1:length(FortranOutputs$GR))
} else {
IndOutputsMod <- which(FortranOutputs$GR %in% RunOptions$Outputs_Sim)
}
## Use of IniResLevels
if (!is.null(RunOptions$IniResLevels)) {
RunOptions$IniStates[1] <- RunOptions$IniResLevels[1] * Param[1] ### production store level (mm)
RunOptions$IniStates[2] <- RunOptions$IniResLevels[2] * Param[3] ### routing store level (mm)
if (IsIntStore) {
RunOptions$IniStates[4] <- RunOptions$IniResLevels[4] * Imax ### interception store level (mm)
}
}
## Call GR model Fortan
RESULTS <- .Fortran("frun_gr5h",PACKAGE="airGR",
## inputs
LInputs = LInputSeries, ### length of input and output series
InputsPrecip = InputsModel$Precip[IndPeriod1], ### input series of total precipitation [mm/h]
InputsPE = InputsModel$PotEvap[IndPeriod1], ### input series potential evapotranspiration [mm/h]
NParam = as.integer(length(Param)), ### number of model parameter
Param = Param, ### parameter set
NStates = as.integer(length(RunOptions$IniStates)), ### number of state variables used for model initialising
StateStart = RunOptions$IniStates, ### state variables used when the model run starts
Imax = Imax, ### maximal capacity of interception store
NOutputs = as.integer(length(IndOutputsMod)), ### number of output series
IndOutputs = IndOutputsMod, ### indices of output series
## outputs
Outputs = matrix(as.double(-999.999), nrow = LInputSeries, ncol = length(IndOutputsMod)), ### output series [mm or mm/h]
StateEnd = rep(as.double(-999.999), length(RunOptions$IniStates)) ### state variables at the end of the model run
)
RESULTS$Outputs[ round(RESULTS$Outputs , 3) == -999.999] <- NA
RESULTS$StateEnd[round(RESULTS$StateEnd, 3) == -999.999] <- NA
if (ExportStateEnd) {
RESULTS$StateEnd[-3L] <- ifelse(RESULTS$StateEnd[-3L] < 0, 0, RESULTS$StateEnd[-3L]) ### remove negative values except for the ExpStore location
idNStates <- seq_len(NStates*NLayers) %% NStates
RESULTS$StateEnd <- CreateIniStates(FUN_MOD = RunModel_CemaNeigeGR5H, InputsModel = InputsModel, IsHyst = IsHyst,
ProdStore = RESULTS$StateEnd[1L], RoutStore = RESULTS$StateEnd[2L], ExpStore = NULL,
IntStore = RESULTS$StateEnd[4L],
UH1 = NULL, UH2 = RESULTS$StateEnd[(1:(40*24))+(7+20*24)],
GCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 1]],
eTGCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 2]],
GthrCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 3]],
GlocmaxCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 0]],
verbose = FALSE)
}
if (inherits(RunOptions, "CemaNeige") & "Precip" %in% RunOptions$Outputs_Sim) {
RESULTS$Outputs[,which(FortranOutputs$GR[IndOutputsMod]=="Precip")] <- InputsModel$Precip[IndPeriod1]
}
## Output data preparation
## OutputsModel only
## OutputsModel only
211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251
if (!ExportDatesR & !ExportStateEnd) {
OutputsModel <- c(lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]),
list(CemaNeigeLayers))
names(OutputsModel) <- c(FortranOutputs$GR[IndOutputsMod], NameCemaNeigeLayers)
}
## DatesR and OutputsModel only
if ( ExportDatesR & !ExportStateEnd) {
OutputsModel <- c(list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]),
list(CemaNeigeLayers))
names(OutputsModel) <- c("DatesR", FortranOutputs$GR[IndOutputsMod], NameCemaNeigeLayers)
}
## OutputsModel and SateEnd only
if (!ExportDatesR & ExportStateEnd) {
OutputsModel <- c(lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]),
list(CemaNeigeLayers),
list(RESULTS$StateEnd))
names(OutputsModel) <- c(FortranOutputs$GR[IndOutputsMod], NameCemaNeigeLayers, "StateEnd")
}
## DatesR and OutputsModel and SateEnd
if ( ExportDatesR & ExportStateEnd) {
OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2, i]),
list(CemaNeigeLayers),
list(RESULTS$StateEnd))
names(OutputsModel) <- c("DatesR", FortranOutputs$GR[IndOutputsMod], NameCemaNeigeLayers, "StateEnd")
}
## End
rm(RESULTS)
class(OutputsModel) <- c("OutputsModel", "hourly", "GR", "CemaNeige")
if (IsHyst) {
class(OutputsModel) <- c(class(OutputsModel), "hysteresis")
}
if (IsIntStore) {
class(OutputsModel) <- c(class(OutputsModel), "interception")
}
return(OutputsModel)
}