Commit 392c0351 authored by unknown's avatar unknown
Browse files

v1.0.9.43 QR1 renamed QRExp in RunModel_*GR6J outputs

Showing with 81 additions and 81 deletions
+81 -81
Package: airGR
Type: Package
Title: Suite of GR Hydrological Models for Precipitation-Runoff Modelling
Version: 1.0.9.42
Date: 2017-09-07
Version: 1.0.9.43
Date: 2017-09-12
Authors@R: c(
person("Laurent", "Coron", role = c("aut", "trl")),
person("Charles", "Perrin", role = c("aut", "ths")),
......
......@@ -3,7 +3,7 @@ RunModel_CemaNeigeGR6J <- function(InputsModel,RunOptions,Param){
NParam <- 8;
FortranOutputsCemaNeige <- c("Pliq","Psol","SnowPack","ThermalState","Gratio","PotMelt","Melt","PliqAndMelt", "Temp");
FortranOutputsMod <- c("PotEvap", "Precip", "Prod", "Pn", "Ps", "AE", "Perc", "PR", "Q9", "Q1",
"Rout", "Exch", "AExch1", "AExch2", "AExch", "QR", "QR1", "Exp", "QD", "Qsim");
"Rout", "Exch", "AExch1", "AExch2", "AExch", "QR", "QRExp", "Exp", "QD", "Qsim");
##Arguments_check
if(inherits(InputsModel,"InputsModel")==FALSE){ stop("InputsModel must be of class 'InputsModel' \n"); return(NULL); }
......
......@@ -2,7 +2,7 @@ RunModel_GR6J <- function(InputsModel,RunOptions,Param){
NParam <- 6;
FortranOutputs <- c("PotEvap", "Precip", "Prod", "Pn", "Ps", "AE", "Perc", "PR", "Q9", "Q1",
"Rout", "Exch", "AExch1", "AExch2", "AExch", "QR", "QR1", "Exp", "QD", "Qsim");
"Rout", "Exch", "AExch1", "AExch2", "AExch", "QR", "QRExp", "Exp", "QD", "Qsim");
##Arguments_check
if(inherits(InputsModel,"InputsModel")==FALSE){ stop("InputsModel must be of class 'InputsModel' \n"); return(NULL); }
......
......@@ -19,15 +19,15 @@ RunModel_CemaNeigeGR6J(InputsModel, RunOptions, Param)
\item{RunOptions}{[object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details}
\item{Param}{[numeric] vector of 8 parameters
\tabular{ll}{
GR6J X1 \tab production store capacity [mm] \cr
GR6J X2 \tab intercatchment exchange coefficient [mm/d] \cr
GR6J X3 \tab routing store capacity [mm] \cr
GR6J X4 \tab unit hydrograph time constant [d] \cr
GR6J X5 \tab intercatchment exchange threshold [-] \cr
GR6J X6 \tab coefficient for emptying exponential store [mm] \cr
CemaNeige X1 \tab weighting coefficient for snow pack thermal state [-] \cr
CemaNeige X2 \tab degree-day melt coefficient [mm/°C/d] \cr
\tabular{ll}{
GR6J X1 \tab production store capacity [mm] \cr
GR6J X2 \tab intercatchment exchange coefficient [mm/d] \cr
GR6J X3 \tab routing store capacity [mm] \cr
GR6J X4 \tab unit hydrograph time constant [d] \cr
GR6J X5 \tab intercatchment exchange threshold [-] \cr
GR6J X6 \tab coefficient for emptying exponential store [mm] \cr
CemaNeige X1 \tab weighting coefficient for snow pack thermal state [-] \cr
CemaNeige X2 \tab degree-day melt coefficient [mm/°C/d] \cr
}}
}
......@@ -35,37 +35,37 @@ CemaNeige X2 \tab degree-day melt coefficient [mm/°C/d] \
\value{
[list] list containing the function outputs organised as follows:
\tabular{ll}{
\emph{$DatesR } \tab [POSIXlt] series of dates \cr
\emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/d] \cr
\emph{$Precip } \tab [numeric] series of input total precipitation [mm/d] \cr
\emph{$Prod } \tab [numeric] series of production store level [mm] \cr
\emph{$Pn } \tab [numeric] series of net rainfall [mm/d] \cr
\emph{$Ps } \tab [numeric] series of the part of Ps filling the production store [mm/d] \cr
\emph{$AE } \tab [numeric] series of actual evapotranspiration [mm/d] \cr
\emph{$Perc } \tab [numeric] series of percolation (PERC) [mm/d] \cr
\emph{$PR } \tab [numeric] series of PR=PN-PS+PERC [mm/d] \cr
\emph{$Q9 } \tab [numeric] series of UH1 outflow (Q9) [mm/d] \cr
\emph{$Q1 } \tab [numeric] series of UH2 outflow (Q1) [mm/d] \cr
\emph{$Rout } \tab [numeric] series of routing store level [mm] \cr
\emph{$Exch } \tab [numeric] series of potential semi-exchange between catchments [mm/d] \cr
\emph{$AExch1 } \tab [numeric] series of actual exchange between catchments for branch 1 [mm/d] \cr
\emph{$AExch2 } \tab [numeric] series of actual exchange between catchments for branch 2 [mm/d] \cr
\emph{$AExch } \tab [numeric] series of actual exchange between catchments (1+2) [mm/d] \cr
\emph{$QR } \tab [numeric] series of routing store outflow (QR) [mm/d] \cr
\emph{$QR1 } \tab [numeric] series of exponential store outflow (QR1) [mm/d] \cr
\emph{$Exp } \tab [numeric] series of exponential store level (negative) [mm] \cr
\emph{$QD } \tab [numeric] series of direct flow from UH2 after exchange (QD) [mm/d] \cr
\emph{$Qsim } \tab [numeric] series of Qsim [mm/d] \cr
\emph{$CemaNeigeLayers} \tab [list] list of CemaNeige outputs (1 list per layer) \cr
\emph{$CemaNeigeLayers[[iLayer]]$Pliq } \tab [numeric] series of liquid precip. [mm/d] \cr
\emph{$CemaNeigeLayers[[iLayer]]$Psol } \tab [numeric] series of solid precip. [mm/d] \cr
\emph{$CemaNeigeLayers[[iLayer]]$SnowPack } \tab [numeric] series of snow pack [mm] \cr
\emph{$CemaNeigeLayers[[iLayer]]$ThermalState } \tab [numeric] series of snow pack thermal state [°C] \cr
\emph{$CemaNeigeLayers[[iLayer]]$Gratio } \tab [numeric] series of Gratio [0-1] \cr
\emph{$CemaNeigeLayers[[iLayer]]$PotMelt } \tab [numeric] series of potential snow melt [mm/d] \cr
\emph{$CemaNeigeLayers[[iLayer]]$Melt } \tab [numeric] series of actual snow melt [mm/d] \cr
\emph{$CemaNeigeLayers[[iLayer]]$PliqAndMelt } \tab [numeric] series of liquid precip. + actual snow melt [mm/d] \cr
\emph{$CemaNeigeLayers[[iLayer]]$Temp } \tab [numeric] series of air temperature [°C] \cr
\emph{$DatesR } \tab [POSIXlt] series of dates \cr
\emph{$PotEvap} \tab [numeric] series of input potential evapotranspiration [mm/d] \cr
\emph{$Precip } \tab [numeric] series of input total precipitation [mm/d] \cr
\emph{$Prod } \tab [numeric] series of production store level [mm] \cr
\emph{$Pn } \tab [numeric] series of net rainfall [mm/d] \cr
\emph{$Ps } \tab [numeric] series of the part of Ps filling the production store [mm/d] \cr
\emph{$AE } \tab [numeric] series of actual evapotranspiration [mm/d] \cr
\emph{$Perc } \tab [numeric] series of percolation (PERC) [mm/d] \cr
\emph{$PR } \tab [numeric] series of PR=PN-PS+PERC [mm/d] \cr
\emph{$Q9 } \tab [numeric] series of UH1 outflow (Q9) [mm/d] \cr
\emph{$Q1 } \tab [numeric] series of UH2 outflow (Q1) [mm/d] \cr
\emph{$Rout } \tab [numeric] series of routing store level [mm] \cr
\emph{$Exch } \tab [numeric] series of potential semi-exchange between catchments [mm/d] \cr
\emph{$AExch1 } \tab [numeric] series of actual exchange between catchments for branch 1 [mm/d] \cr
\emph{$AExch2 } \tab [numeric] series of actual exchange between catchments for branch 2 [mm/d] \cr
\emph{$AExch } \tab [numeric] series of actual exchange between catchments (1+2) [mm/d] \cr
\emph{$QR } \tab [numeric] series of routing store outflow (QR) [mm/d] \cr
\emph{$QRExp } \tab [numeric] series of exponential store outflow (QRExp) [mm/d] \cr
\emph{$Exp } \tab [numeric] series of exponential store level (negative) [mm] \cr
\emph{$QD } \tab [numeric] series of direct flow from UH2 after exchange (QD) [mm/d] \cr
\emph{$Qsim } \tab [numeric] series of Qsim [mm/d] \cr
\emph{$CemaNeigeLayers} \tab [list] list of CemaNeige outputs (1 list per layer) \cr
\emph{$CemaNeigeLayers[[iLayer]]$Pliq } \tab [numeric] series of liquid precip. [mm/d] \cr
\emph{$CemaNeigeLayers[[iLayer]]$Psol } \tab [numeric] series of solid precip. [mm/d] \cr
\emph{$CemaNeigeLayers[[iLayer]]$SnowPack } \tab [numeric] series of snow pack [mm] \cr
\emph{$CemaNeigeLayers[[iLayer]]$ThermalState} \tab [numeric] series of snow pack thermal state [°C] \cr
\emph{$CemaNeigeLayers[[iLayer]]$Gratio } \tab [numeric] series of Gratio [0-1] \cr
\emph{$CemaNeigeLayers[[iLayer]]$PotMelt } \tab [numeric] series of potential snow melt [mm/d] \cr
\emph{$CemaNeigeLayers[[iLayer]]$Melt } \tab [numeric] series of actual snow melt [mm/d] \cr
\emph{$CemaNeigeLayers[[iLayer]]$PliqAndMelt } \tab [numeric] series of liquid precip. + actual snow melt [mm/d]\cr
\emph{$CemaNeigeLayers[[iLayer]]$Temp } \tab [numeric] series of air temperature [°C] \cr
\emph{$StateEnd} \tab [numeric] states at the end of the run: \cr\tab store & unit hydrographs levels [mm], CemaNeige states [mm & °C], \cr\tab see \code{\link{CreateIniStates}} for more details \cr
}
(refer to the provided references or to the package source code for further details on these model outputs)
......
......@@ -19,13 +19,13 @@ RunModel_GR6J(InputsModel, RunOptions, Param)
\item{RunOptions}{[object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details}
\item{Param}{[numeric] vector of 6 parameters
\tabular{ll}{
GR6J X1 \tab production store capacity [mm] \cr
GR6J X2 \tab intercatchment exchange coefficient [mm/d] \cr
GR6J X3 \tab routing store capacity [mm] \cr
GR6J X4 \tab unit hydrograph time constant [d] \cr
GR6J X5 \tab intercatchment exchange threshold [-] \cr
GR6J X6 \tab coefficient for emptying exponential store [mm] \cr
\tabular{ll}{
GR6J X1 \tab production store capacity [mm] \cr
GR6J X2 \tab intercatchment exchange coefficient [mm/d] \cr
GR6J X3 \tab routing store capacity [mm] \cr
GR6J X4 \tab unit hydrograph time constant [d] \cr
GR6J X5 \tab intercatchment exchange threshold [-] \cr
GR6J X6 \tab coefficient for emptying exponential store [mm] \cr
}}
}
......@@ -36,22 +36,22 @@ GR6J X6 \tab coefficient for emptying exponential store [mm]
\emph{$DatesR } \tab [POSIXlt] series of dates \cr
\emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/d] \cr
\emph{$Precip } \tab [numeric] series of input total precipitation [mm/d] \cr
\emph{$Prod } \tab [numeric] series of production store level [mm] \cr
\emph{$Pn } \tab [numeric] series of net rainfall [mm/d] \cr
\emph{$Prod } \tab [numeric] series of production store level [mm] \cr
\emph{$Pn } \tab [numeric] series of net rainfall [mm/d] \cr
\emph{$Ps } \tab [numeric] series of the part of Pn filling the production store [mm/d] \cr
\emph{$AE } \tab [numeric] series of actual evapotranspiration [mm/d] \cr
\emph{$Perc } \tab [numeric] series of percolation (PERC) [mm/d] \cr
\emph{$PR } \tab [numeric] series of PR=Pn-Ps+Perc [mm/d] \cr
\emph{$Q9 } \tab [numeric] series of UH1 outflow (Q9) [mm/d] \cr
\emph{$Q1 } \tab [numeric] series of UH2 outflow (Q1) [mm/d] \cr
\emph{$Rout } \tab [numeric] series of routing store level [mm] \cr
\emph{$Rout } \tab [numeric] series of routing store level [mm] \cr
\emph{$Exch } \tab [numeric] series of potential semi-exchange between catchments [mm/d] \cr
\emph{$AExch1 } \tab [numeric] series of actual exchange between catchments for branch 1 [mm/d] \cr
\emph{$AExch2 } \tab [numeric] series of actual exchange between catchments for branch 2 [mm/d] \cr
\emph{$AExch } \tab [numeric] series of actual exchange between catchments (1+2) [mm/d] \cr
\emph{$QR } \tab [numeric] series of routing store outflow (QR) [mm/d] \cr
\emph{$QR1 } \tab [numeric] series of exponential store outflow (QR1) [mm/d] \cr
\emph{$Exp } \tab [numeric] series of exponential store level (negative) [mm] \cr
\emph{$QRExp } \tab [numeric] series of exponential store outflow (QRExp) [mm/d] \cr
\emph{$Exp } \tab [numeric] series of exponential store level (negative) [mm] \cr
\emph{$QD } \tab [numeric] series of direct flow from UH2 after exchange (QD) [mm/d] \cr
\emph{$Qsim } \tab [numeric] series of Qsim [mm/d] \cr
\emph{$StateEnd} \tab [numeric] states at the end of the run (res. levels, UH1 levels, UH2 levels) [mm], \cr\tab see \code{\link{CreateIniStates}} for more details \cr
......
......@@ -153,7 +153,7 @@ C**********************************************************************
DOUBLEPRECISION MISC(NMISC)
DOUBLEPRECISION P1,E,Q
DOUBLEPRECISION A,B,C,EN,ER,PN,PR,PS,WS,tanHyp,AR
DOUBLEPRECISION PERC,PRUH1,PRUH2,EXCH,QR,QD,QR1
DOUBLEPRECISION PERC,PRUH1,PRUH2,EXCH,QR,QD,QRExp
DOUBLEPRECISION AE,AEXCH1,AEXCH2
INTEGER K
......@@ -257,19 +257,19 @@ C Update of exponential store
IF(AR.LT.-33.)AR=-33.
IF(AR.GT.7.)THEN
QR1=St(3)+Param(6)/EXP(AR)
QRExp=St(3)+Param(6)/EXP(AR)
GOTO 3
ENDIF
IF(AR.LT.-7.)THEN
QR1=Param(6)*EXP(AR)
QRExp=Param(6)*EXP(AR)
GOTO 3
ENDIF
QR1=Param(6)*LOG(EXP(AR)+1.)
QRExp=Param(6)*LOG(EXP(AR)+1.)
3 CONTINUE
St(3)=St(3)-QR1
St(3)=St(3)-QRExp
C Runoff from direct branch QD
AEXCH2=EXCH
......@@ -277,30 +277,30 @@ C Runoff from direct branch QD
QD=MAX(0.d0,StUH2(1)+EXCH)
C Total runoff
Q=QR+QD+QR1
Q=QR+QD+QRExp
IF(Q.LT.0.) Q=0.
C Variables storage
MISC( 1)=E ! PE ! observed potential evapotranspiration [mm/day]
MISC( 2)=P1 ! Precip ! observed total precipitation [mm/day]
MISC( 3)=St(1) ! Prod ! production store level (St(1)) [mm]
MISC( 4)=PN ! Pn ! net rainfall [mm/day]
MISC( 5)=PS ! Ps ! part of Ps filling the production store [mm/day]
MISC( 6)=AE ! AE ! actual evapotranspiration [mm/day]
MISC( 7)=PERC ! Perc ! percolation (PERC) [mm/day]
MISC( 8)=PR ! PR ! PR=PN-PS+PERC [mm/day]
MISC( 9)=StUH1(1) ! Q9 ! outflow from UH1 (Q9) [mm/day]
MISC(10)=StUH2(1) ! Q1 ! outflow from UH2 (Q1) [mm/day]
MISC(11)=St(2) ! Rout ! routing store level (St(2)) [mm]
MISC(12)=EXCH ! Exch ! potential third-exchange between catchments (EXCH) [mm/day]
MISC(13)=AEXCH1 ! AExch1 ! actual exchange between catchments from routing store (AEXCH1) [mm/day]
MISC(14)=AEXCH2 ! AExch2 ! actual exchange between catchments from direct branch (after UH2) (AEXCH2) [mm/day]
MISC( 1)=E ! PE ! observed potential evapotranspiration [mm/day]
MISC( 2)=P1 ! Precip ! observed total precipitation [mm/day]
MISC( 3)=St(1) ! Prod ! production store level (St(1)) [mm]
MISC( 4)=PN ! Pn ! net rainfall [mm/day]
MISC( 5)=PS ! Ps ! part of Ps filling the production store [mm/day]
MISC( 6)=AE ! AE ! actual evapotranspiration [mm/day]
MISC( 7)=PERC ! Perc ! percolation (PERC) [mm/day]
MISC( 8)=PR ! PR ! PR=PN-PS+PERC [mm/day]
MISC( 9)=StUH1(1) ! Q9 ! outflow from UH1 (Q9) [mm/day]
MISC(10)=StUH2(1) ! Q1 ! outflow from UH2 (Q1) [mm/day]
MISC(11)=St(2) ! Rout ! routing store level (St(2)) [mm]
MISC(12)=EXCH ! Exch ! potential third-exchange between catchments (EXCH) [mm/day]
MISC(13)=AEXCH1 ! AExch1 ! actual exchange between catchments from routing store (AEXCH1) [mm/day]
MISC(14)=AEXCH2 ! AExch2 ! actual exchange between catchments from direct branch (after UH2) (AEXCH2) [mm/day]
MISC(15)=AEXCH1+AEXCH2+EXCH ! AExch ! actual total exchange between catchments (AEXCH1+AEXCH2+EXCH) [mm/day]
MISC(16)=QR ! QR ! outflow from routing store (QR) [mm/day]
MISC(17)=QR1 ! QR1 ! outflow from exponential store (QR1) [mm/day]
MISC(18)=St(3) ! Exp ! exponential store level (St(3)) (negative) [mm]
MISC(19)=QD ! QD ! outflow from UH2 branch after exchange (QD) [mm/day]
MISC(20)=Q ! Qsim ! simulated outflow at catchment outlet [mm/day]
MISC(16)=QR ! QR ! outflow from routing store (QR) [mm/day]
MISC(17)=QRExp ! QRExp ! outflow from exponential store (QRExp) [mm/day]
MISC(18)=St(3) ! Exp ! exponential store level (St(3)) (negative) [mm]
MISC(19)=QD ! QD ! outflow from UH2 branch after exchange (QD) [mm/day]
MISC(20)=Q ! Qsim ! simulated outflow at catchment outlet [mm/day]
ENDSUBROUTINE
......
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment