Commit 9489d600 authored by Delaigue Olivier's avatar Delaigue Olivier
Browse files

v1.3.0.0 NEW: add a RunModel_CemaNeigeGR4H fun

Showing with 368 additions and 10 deletions
+368 -10
Package: airGR Package: airGR
Type: Package Type: Package
Title: Suite of GR Hydrological Models for Precipitation-Runoff Modelling Title: Suite of GR Hydrological Models for Precipitation-Runoff Modelling
Version: 1.2.15.7 Version: 1.3.0.0
Date: 2019-05-03 Date: 2019-05-20
Authors@R: c( Authors@R: c(
person("Laurent", "Coron", role = c("aut", "trl"), comment = c(ORCID = "0000-0002-1503-6204")), person("Laurent", "Coron", role = c("aut", "trl"), comment = c(ORCID = "0000-0002-1503-6204")),
person("Olivier", "Delaigue", role = c("aut", "cre"), comment = c(ORCID = "0000-0002-7668-8468"), email = "airGR@irstea.fr"), person("Olivier", "Delaigue", role = c("aut", "cre"), comment = c(ORCID = "0000-0002-7668-8468"), email = "airGR@irstea.fr"),
......
...@@ -13,8 +13,7 @@ output: ...@@ -13,8 +13,7 @@ output:
3.0.02.15.7 Release Notes (2019-05-20)
### 1.2.15.7 Release Notes (2019-05-03)
#### New features #### New features
......
RunModel_CemaNeigeGR4H <- function(InputsModel,RunOptions,Param){
## Initialization of variables
IsHyst <- inherits(RunOptions, "hysteresis")
NParam <- ifelse(test = IsHyst, yes = 8L, no = 6L)
NStates <- 4L
FortranOutputs <- .FortranOutputs(GR = "GR4H", isCN = TRUE)
##Arguments_check
if(!inherits(InputsModel,"InputsModel")){ stop("'InputsModel' must be of class 'InputsModel'") }
if(!inherits(InputsModel,"hourly" )){ stop("'InputsModel' must be of class 'hourly' ") }
if(!inherits(InputsModel,"GR" )){ stop("'InputsModel' must be of class 'GR' ") }
if(!inherits(InputsModel,"CemaNeige" )){ stop("'InputsModel' must be of class 'CemaNeige' ") }
if(!inherits(RunOptions,"RunOptions" )){ stop("'RunOptions' must be of class 'RunOptions' ") }
if(!inherits(RunOptions,"GR" )){ stop("'RunOptions' must be of class 'GR' ") }
if(!inherits(RunOptions,"CemaNeige" )){ stop("'RunOptions' must be of class 'CemaNeige' ") }
if(!is.vector(Param) | !is.numeric(Param)){ stop("'Param' must be a numeric vector") }
if(sum(!is.na(Param))!=NParam){ stop(paste("'Param' must be a vector of length ",NParam," and contain no NA",sep="")) }
Param <- as.double(Param);
Param_X1X3_threshold <- 1e-2
Param_X4_threshold <- 0.5
if (Param[1L] < Param_X1X3_threshold) {
warning(sprintf("Param[1] (X1: production store capacity [mm]) < %.2f\n X1 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold))
Param[1L] <- Param_X1X3_threshold
}
if (Param[3L] < Param_X1X3_threshold) {
warning(sprintf("Param[3] (X3: routing store capacity [mm]) < %.2f\n X3 set to %.2f", Param_X1X3_threshold, Param_X1X3_threshold))
Param[3L] <- Param_X1X3_threshold
}
if (Param[4L] < Param_X4_threshold) {
warning(sprintf("Param[4] (X4: unit hydrograph time constant [d]) < %.2f\n X4 set to %.2f", Param_X4_threshold, Param_X4_threshold))
Param[4L] <- Param_X4_threshold
}
##Input_data_preparation
if(identical(RunOptions$IndPeriod_WarmUp,as.integer(0))){ RunOptions$IndPeriod_WarmUp <- NULL; }
IndPeriod1 <- c(RunOptions$IndPeriod_WarmUp,RunOptions$IndPeriod_Run);
LInputSeries <- as.integer(length(IndPeriod1))
IndPeriod2 <- (length(RunOptions$IndPeriod_WarmUp)+1):LInputSeries;
ParamCemaNeige <- Param[(length(Param)-1-2*as.integer(IsHyst)):length(Param)];
NParamMod <- as.integer(length(Param)-(2+2*as.integer(IsHyst)));
ParamMod <- Param[1:NParamMod];
NLayers <- length(InputsModel$LayerPrecip);
NStatesMod <- as.integer(length(RunOptions$IniStates)-NStates*NLayers);
ExportDatesR <- "DatesR" %in% RunOptions$Outputs_Sim;
ExportStateEnd <- "StateEnd" %in% RunOptions$Outputs_Sim;
##SNOW_MODULE________________________________________________________________________________##
if(inherits(RunOptions,"CemaNeige")){
if("all" %in% RunOptions$Outputs_Sim){ IndOutputsCemaNeige <- as.integer(1:length(FortranOutputs$CN));
} else { IndOutputsCemaNeige <- which(FortranOutputs$CN %in% RunOptions$Outputs_Sim); }
CemaNeigeLayers <- list(); CemaNeigeStateEnd <- NULL; NameCemaNeigeLayers <- "CemaNeigeLayers";
##Call_DLL_CemaNeige_________________________
for(iLayer in 1:NLayers){
if (!IsHyst) {
StateStartCemaNeige <- RunOptions$IniStates[(7 + 20 + 40) + c(iLayer, iLayer+NLayers)]
} else {
StateStartCemaNeige <- RunOptions$IniStates[(7 + 20 + 40) + c(iLayer, iLayer+NLayers, iLayer+2*NLayers, iLayer+3*NLayers)]
}
RESULTS <- .Fortran("frun_CemaNeige",PACKAGE="airGR",
##inputs
LInputs=LInputSeries, ### length of input and output series
InputsPrecip=InputsModel$LayerPrecip[[iLayer]][IndPeriod1], ### input series of total precipitation [mm/h]
InputsFracSolidPrecip=InputsModel$LayerFracSolidPrecip[[iLayer]][IndPeriod1], ### input series of fraction of solid precipitation [0-1]
InputsTemp=InputsModel$LayerTemp[[iLayer]][IndPeriod1], ### input series of air mean temperature [degC]
MeanAnSolidPrecip=RunOptions$MeanAnSolidPrecip[iLayer], ### value of annual mean solid precip [mm/y]
NParam=as.integer(NParam), ### number of model parameter = 2
Param=as.double(ParamCemaNeige), ### parameter set
NStates=as.integer(NStates), ### number of state variables used for model initialising = 2
StateStart=StateStartCemaNeige, ### state variables used when the model run starts
IsHyst = as.integer(IsHyst), ### use of hysteresis
NOutputs=as.integer(length(IndOutputsCemaNeige)), ### number of output series
IndOutputs=IndOutputsCemaNeige, ### indices of output series
##outputs
Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputsCemaNeige)), ### output series [mm]
StateEnd=rep(as.double(-999.999),as.integer(NStates)) ### state variables at the end of the model run (reservoir levels [mm] and HU)
)
RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA;
RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA;
##Data_storage
CemaNeigeLayers[[iLayer]] <- lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]);
names(CemaNeigeLayers[[iLayer]]) <- FortranOutputs$CN[IndOutputsCemaNeige];
IndPliqAndMelt <- which(names(CemaNeigeLayers[[iLayer]]) == "PliqAndMelt");
if(iLayer==1){ CatchMeltAndPliq <- RESULTS$Outputs[,IndPliqAndMelt]/NLayers; }
if(iLayer >1){ CatchMeltAndPliq <- CatchMeltAndPliq + RESULTS$Outputs[,IndPliqAndMelt]/NLayers; }
if(ExportStateEnd){ CemaNeigeStateEnd <- c(CemaNeigeStateEnd,RESULTS$StateEnd); }
rm(RESULTS);
} ###ENDFOR_iLayer
names(CemaNeigeLayers) <- sprintf("Layer%02i", seq_len(NLayers))
} ###ENDIF_RunSnowModule
if(!inherits(RunOptions,"CemaNeige")){
CemaNeigeLayers <- list(); CemaNeigeStateEnd <- NULL; NameCemaNeigeLayers <- NULL;
CatchMeltAndPliq <- InputsModel$Precip[IndPeriod1]; }
##MODEL______________________________________________________________________________________##
if("all" %in% RunOptions$Outputs_Sim){ IndOutputsMod <- as.integer(1:length(FortranOutputs$GR));
} else { IndOutputsMod <- which(FortranOutputs$GR %in% RunOptions$Outputs_Sim); }
##Use_of_IniResLevels
if(!is.null(RunOptions$IniResLevels)){
RunOptions$IniStates[1] <- RunOptions$IniResLevels[1]*ParamMod[1]; ### production store level (mm)
RunOptions$IniStates[2] <- RunOptions$IniResLevels[2]*ParamMod[3]; ### routing store level (mm)
}
##Call_fortan
RESULTS <- .Fortran("frun_GR4H",PACKAGE="airGR",
##inputs
LInputs=LInputSeries, ### length of input and output series
InputsPrecip=CatchMeltAndPliq, ### input series of total precipitation [mm/h]
InputsPE=InputsModel$PotEvap[IndPeriod1], ### input series potential evapotranspiration [mm/h]
NParam=NParamMod, ### number of model parameter
Param=ParamMod, ### parameter set
NStates=NStatesMod, ### number of state variables used for model initialising
StateStart=RunOptions$IniStates[1:NStatesMod], ### state variables used when the model run starts
NOutputs=as.integer(length(IndOutputsMod)), ### number of output series
IndOutputs=IndOutputsMod, ### indices of output series
##outputs
Outputs=matrix(as.double(-999.999),nrow=LInputSeries,ncol=length(IndOutputsMod)), ### output series [mm]
StateEnd=rep(as.double(-999.999),NStatesMod) ### state variables at the end of the model run
)
RESULTS$Outputs[ round(RESULTS$Outputs ,3)==(-999.999)] <- NA;
RESULTS$StateEnd[round(RESULTS$StateEnd,3)==(-999.999)] <- NA;
if (ExportStateEnd) {
idNStates <- seq_len(NStates*NLayers) %% NStates
RESULTS$StateEnd <- CreateIniStates(FUN_MOD = RunModel_CemaNeigeGR4J, InputsModel = InputsModel, IsHyst = IsHyst,
ProdStore = RESULTS$StateEnd[1L], RoutStore = RESULTS$StateEnd[2L], ExpStore = NULL,
UH1 = RESULTS$StateEnd[(1:20)+7], UH2 = RESULTS$StateEnd[(1:40)+(7+20)],
GCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 3]],
eTGCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 2]],
GthrCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 1]],
GlocmaxCemaNeigeLayers = CemaNeigeStateEnd[seq_len(NStates*NLayers)[idNStates == 0]],
verbose = FALSE)
}
if(inherits(RunOptions,"CemaNeige") & "Precip" %in% RunOptions$Outputs_Sim){ RESULTS$Outputs[,which(FortranOutputs$GR[IndOutputsMod]=="Precip")] <- InputsModel$Precip[IndPeriod1]; }
##Output_data_preparation
##OutputsModel_only
if(!ExportDatesR & !ExportStateEnd){
OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
list(CemaNeigeLayers) );
names(OutputsModel) <- c(FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers); }
##DatesR_and_OutputsModel_only
if( ExportDatesR & !ExportStateEnd){
OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
list(CemaNeigeLayers) );
names(OutputsModel) <- c("DatesR",FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers); }
##OutputsModel_and_SateEnd_only
if(!ExportDatesR & ExportStateEnd){
OutputsModel <- c( lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
list(CemaNeigeLayers),
list(RESULTS$StateEnd) );
names(OutputsModel) <- c(FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers,"StateEnd"); }
##DatesR_and_OutputsModel_and_SateEnd
if( ExportDatesR & ExportStateEnd){
OutputsModel <- c( list(InputsModel$DatesR[RunOptions$IndPeriod_Run]),
lapply(seq_len(RESULTS$NOutputs), function(i) RESULTS$Outputs[IndPeriod2,i]),
list(CemaNeigeLayers),
list(RESULTS$StateEnd) );
names(OutputsModel) <- c("DatesR",FortranOutputs$GR[IndOutputsMod],NameCemaNeigeLayers,"StateEnd"); }
##End
rm(RESULTS);
class(OutputsModel) <- c("OutputsModel","hourly","GR","CemaNeige");
if(IsHyst) {
class(OutputsModel) <- c(class(OutputsModel), "hysteresis")
}
return(OutputsModel);
}
\encoding{UTF-8}
\name{RunModel_CemaNeigeGR4H}
\alias{RunModel_CemaNeigeGR4H}
\title{Run with the CemaNeigeGR4H hydrological model}
\usage{
RunModel_CemaNeigeGR4H(InputsModel, RunOptions, Param)
}
\arguments{
\item{InputsModel}{[object of class \emph{InputsModel}] see \code{\link{CreateInputsModel}} for details}
\item{RunOptions}{[object of class \emph{RunOptions}] see \code{\link{CreateRunOptions}} for details}
\item{Param}{[numeric] vector of 6 (or 8 parameters if \code{IsHyst = TRUE}, see \code{\link{CreateRunOptions}} for details)
\tabular{ll}{
GR4H X1 \tab production store capacity [mm] \cr
GR4H X2 \tab intercatchment exchange coefficient [mm/h] \cr
GR4H X3 \tab routing store capacity [mm] \cr
GR4H X4 \tab unit hydrograph time constant [d] \cr
CemaNeige X1 \tab weighting coefficient for snow pack thermal state [-] \cr
CemaNeige X2 \tab degree-hour melt coefficient [mm/°C/h] \cr
CemaNeige X3 \tab (optional) accumulation threshold [mm] (needed if \code{IsHyst = TRUE}) \cr
CemaNeige X4 \tab (optional) percentage (between 0 and 1) of annual snowfall defining the melt threshold [-] (needed if \code{IsHyst = TRUE}) \cr
}}
}
\value{
[list] list containing the function outputs organised as follows:
\tabular{ll}{
\emph{$DatesR } \tab [POSIXlt] series of dates \cr
\emph{$PotEvap } \tab [numeric] series of input potential evapotranspiration [mm/h] \cr
\emph{$Precip } \tab [numeric] series of input total precipitation [mm/h] \cr
\emph{$Prod } \tab [numeric] series of production store level [mm] \cr
\emph{$Pn } \tab [numeric] series of net rainfall [mm/h] \cr
\emph{$Ps } \tab [numeric] series of the part of Pn filling the production store [mm/h] \cr
\emph{$AE } \tab [numeric] series of actual evapotranspiration [mm/h] \cr
\emph{$Perc } \tab [numeric] series of percolation (PERC) [mm/h] \cr
\emph{$PR } \tab [numeric] series of PR=Pn-Ps+Perc [mm/h] \cr
\emph{$Q9 } \tab [numeric] series of UH1 outflow (Q9) [mm/h] \cr
\emph{$Q1 } \tab [numeric] series of UH2 outflow (Q1) [mm/h] \cr
\emph{$Rout } \tab [numeric] series of routing store level [mm] \cr
\emph{$Exch } \tab [numeric] series of potential semi-exchange between catchments [mm/h] \cr
\emph{$AExch1 } \tab [numeric] series of actual exchange between catchments for branch 1 [mm/h] \cr
\emph{$AExch2 } \tab [numeric] series of actual exchange between catchments for branch 2 [mm/h] \cr
\emph{$AExch } \tab [numeric] series of actual exchange between catchments (1+2) [mm/h] \cr
\emph{$QR } \tab [numeric] series of routing store outflow (QR) [mm/h] \cr
\emph{$QD } \tab [numeric] series of direct flow from UH2 after exchange (QD) [mm/h] \cr
\emph{$Qsim } \tab [numeric] series of simulated discharge [mm/h] \cr
\emph{$CemaNeigeLayers} \tab [list] list of CemaNeige outputs (1 list per layer) \cr
\emph{$CemaNeigeLayers[[iLayer]]$Pliq } \tab [numeric] series of liquid precip. [mm/h] \cr
\emph{$CemaNeigeLayers[[iLayer]]$Psol } \tab [numeric] series of solid precip. [mm/h] \cr
\emph{$CemaNeigeLayers[[iLayer]]$SnowPack } \tab [numeric] series of snow pack [mm] \cr
\emph{$CemaNeigeLayers[[iLayer]]$ThermalState } \tab [numeric] series of snow pack thermal state [°C] \cr
\emph{$CemaNeigeLayers[[iLayer]]$Gratio } \tab [numeric] series of Gratio [0-1] \cr
\emph{$CemaNeigeLayers[[iLayer]]$PotMelt } \tab [numeric] series of potential snow melt [mm/h] \cr
\emph{$CemaNeigeLayers[[iLayer]]$Melt } \tab [numeric] series of actual snow melt [mm/h] \cr
\emph{$CemaNeigeLayers[[iLayer]]$PliqAndMelt } \tab [numeric] series of liquid precip. + actual snow melt [mm/h] \cr
\emph{$CemaNeigeLayers[[iLayer]]$Temp } \tab [numeric] series of air temperature [°C] \cr
\emph{$CemaNeigeLayers[[iLayer]]$Gthreshold } \tab [numeric] series of melt threshold [mm] \cr
\emph{$CemaNeigeLayers[[iLayer]]$Glocalmax } \tab [numeric] series of local melt threshold for hysteresis [mm] \cr
\emph{$StateEnd} \tab [numeric] states at the end of the run: \cr\tab store & unit hydrographs levels [mm], CemaNeige states [mm & °C], \cr\tab see \code{\link{CreateIniStates}} for more details \cr
}
(refer to the provided references or to the package source code for further details on these model outputs)
}
\description{
Function which performs a single run for the CemaNeige-GR4H daily lumped model over the test period.
}
\details{
The choice of the CemaNeige version is explained in \code{\link{CreateRunOptions}}. \cr
For further details on the model, see the references section. \cr
For further details on the argument structures and initialisation options, see \code{\link{CreateRunOptions}}.
}
\examples{
library(airGR)
## loading catchment data
data(L0123002)
## preparation of the InputsModel object
InputsModel <- CreateInputsModel(FUN_MOD = RunModel_CemaNeigeGR4H, DatesR = BasinObs$DatesR,
Precip = BasinObs$P, PotEvap = BasinObs$E, TempMean = BasinObs$T,
ZInputs = median(BasinInfo$HypsoData),
HypsoData = BasinInfo$HypsoData, NLayers = 5)
## run period selection
Ind_Run <- seq(which(format(BasinObs$DatesR, format = "\%Y-\%m-\%d")=="1990-01-01"),
which(format(BasinObs$DatesR, format = "\%Y-\%m-\%d")=="1999-12-31"))
## ---- original version of CemaNeige
## preparation of the RunOptions object
RunOptions <- CreateRunOptions(FUN_MOD = RunModel_CemaNeigeGR4H, InputsModel = InputsModel,
IndPeriod_Run = Ind_Run)
## simulation
Param <- c(X1 = 408.774, X2 = 2.646, X3 = 131.264, X4 = 1.174,
CNX1 = 0.962, CNX2 = 2.249)
OutputsModel <- RunModel_CemaNeigeGR4H(InputsModel = InputsModel,
RunOptions = RunOptions, Param = Param)
## results preview
plot(OutputsModel, Qobs = BasinObs$Qmm[Ind_Run])
## efficiency criterion: Nash-Sutcliffe Efficiency
InputsCrit <- CreateInputsCrit(FUN_CRIT = ErrorCrit_NSE, InputsModel = InputsModel,
RunOptions = RunOptions, Obs = BasinObs$Qmm[Ind_Run])
OutputsCrit <- ErrorCrit_NSE(InputsCrit = InputsCrit, OutputsModel = OutputsModel)
## ---- version of CemaNeige with the Linear Hysteresis
## preparation of the RunOptions object
RunOptions <- CreateRunOptions(FUN_MOD = RunModel_CemaNeigeGR4H, InputsModel = InputsModel,
IndPeriod_Run = Ind_Run, IsHyst = TRUE)
## simulation
Param <- c(X1 = 408.774, X2 = 2.646, X3 = 131.264, X4 = 1.174,
CNX1 = 0.962, CNX2 = 2.249, CNX3 = 100, CNX4 = 0.4)
OutputsModel <- RunModel_CemaNeigeGR4H(InputsModel = InputsModel,
RunOptions = RunOptions, Param = Param)
## results preview
plot(OutputsModel, Qobs = BasinObs$Qmm[Ind_Run])
## efficiency criterion: Nash-Sutcliffe Efficiency
InputsCrit <- CreateInputsCrit(FUN_CRIT = ErrorCrit_NSE, InputsModel = InputsModel,
RunOptions = RunOptions, Obs = BasinObs$Qmm[Ind_Run])
OutputsCrit <- ErrorCrit_NSE(InputsCrit = InputsCrit, OutputsModel = OutputsModel)
}
\author{
Laurent Coron, Audrey Valéry, Claude Michel, Charles Perrin, Vazken Andréassian, Olivier Delaigue
}
\references{
Perrin, C., C. Michel and V. Andréassian (2003).
Improvement of a parsimonious model for streamflow simulation.
Journal of Hydrology, 279(1-4), 275-289, doi:10.1016/S0022-1694(03)00225-7.
\cr\cr
Riboust, P., G. Thirel, N. Le Moine and P. Ribstein (2019).
Revisiting a simple degree-day model for integrating satellite data: implementation of SWE-SCA hystereses.
Journal of Hydrology and Hydromechanics. doi:10.2478/johh-2018-0004, 67, 1, 70–81.
\cr\cr
Valéry, A., V. Andréassian and C. Perrin (2014).
"As simple as possible but not simpler": what is useful in a temperature-based snow-accounting routine?
Part 1 - Comparison of six snow accounting routines on 380 catchments.
Journal of Hydrology. doi:10.1016/j.jhydrol.2014.04.059.
\cr\cr
Valéry, A., V. Andréassian and C. Perrin (2014).
"As simple as possible but not simpler": What is useful in a temperature-based snow-accounting routine?
Part 2 - Sensitivity analysis of the Cemaneige snow accounting routine on 380 catchments.
Journal of Hydrology. doi:10.1016/j.jhydrol.2014.04.058.
}
\seealso{
\code{\link{RunModel_CemaNeige}}, \code{\link{RunModel_CemaNeigeGR4J}}, \code{\link{RunModel_CemaNeigeGR5J}},
\code{\link{RunModel_CemaNeigeGR6J}}, \code{\link{RunModel_GR4H}},
\code{\link{CreateInputsModel}}, \code{\link{CreateRunOptions}}, \code{\link{CreateIniStates}}.
}
...@@ -5,7 +5,7 @@ ...@@ -5,7 +5,7 @@
SUBROUTINE frun_CEMANEIGE( SUBROUTINE frun_CEMANEIGE(
!inputs !inputs
& LInputs , ! [integer] length of input and output series & LInputs , ! [integer] length of input and output series
& InputsPrecip , ! [double] input series of total precipitation [mm] & InputsPrecip , ! [double] input series of total precipitation [mm/time step]
& InputsFracSolidPrecip, ! [double] input series of fraction of solid precipitation [0-1] & InputsFracSolidPrecip, ! [double] input series of fraction of solid precipitation [0-1]
& InputsTemp , ! [double] input series of air mean temperature [degC] & InputsTemp , ! [double] input series of air mean temperature [degC]
& MeanAnSolidPrecip , ! [double] value of annual mean solid precip [mm/y] & MeanAnSolidPrecip , ! [double] value of annual mean solid precip [mm/y]
...@@ -153,14 +153,14 @@ c Outputs = -999.999 !initialisation made in R ...@@ -153,14 +153,14 @@ c Outputs = -999.999 !initialisation made in R
!Storage of outputs !Storage of outputs
DO I=1,NOutputs DO I=1,NOutputs
IF(IndOutputs(I).EQ.1) Outputs(k,I)=Pliq ! Pliq ! observed liquid precipitation [mm/day] IF(IndOutputs(I).EQ.1) Outputs(k,I)=Pliq ! Pliq ! observed liquid precipitation [mm/time step]
IF(IndOutputs(I).EQ.2) Outputs(k,I)=Psol ! Psol ! observed solid precipitation [mm/day] IF(IndOutputs(I).EQ.2) Outputs(k,I)=Psol ! Psol ! observed solid precipitation [mm/time step]
IF(IndOutputs(I).EQ.3) Outputs(k,I)=G ! SnowPack ! snow pack [mm] IF(IndOutputs(I).EQ.3) Outputs(k,I)=G ! SnowPack ! snow pack [mm]
IF(IndOutputs(I).EQ.4) Outputs(k,I)=eTG ! ThermalState ! thermal state [°C] IF(IndOutputs(I).EQ.4) Outputs(k,I)=eTG ! ThermalState ! thermal state [°C]
IF(IndOutputs(I).EQ.5) Outputs(k,I)=Gratio ! Gratio ! Gratio [-] IF(IndOutputs(I).EQ.5) Outputs(k,I)=Gratio ! Gratio ! Gratio [-]
IF(IndOutputs(I).EQ.6) Outputs(k,I)=PotMelt ! PotMelt ! potential snow melt [mm/day] IF(IndOutputs(I).EQ.6) Outputs(k,I)=PotMelt ! PotMelt ! potential snow melt [mm/time step]
IF(IndOutputs(I).EQ.7) Outputs(k,I)=Melt ! Melt ! melt [mm/day] IF(IndOutputs(I).EQ.7) Outputs(k,I)=Melt ! Melt ! melt [mm/time step]
IF(IndOutputs(I).EQ.8) Outputs(k,I)=PliqAndMelt ! PliqAndMelt ! liquid precipitation + melt [mm/day] IF(IndOutputs(I).EQ.8) Outputs(k,I)=PliqAndMelt ! PliqAndMelt ! liquid precipitation + melt [mm/time step]
IF(IndOutputs(I).EQ.9) Outputs(k,I)=InputsTemp(k) ! Temp ! air temperature [°C] IF(IndOutputs(I).EQ.9) Outputs(k,I)=InputsTemp(k) ! Temp ! air temperature [°C]
IF(IndOutputs(I).EQ.10) Outputs(k,I)=Gthreshold ! Gthreshold ! melt threshold [mm] IF(IndOutputs(I).EQ.10) Outputs(k,I)=Gthreshold ! Gthreshold ! melt threshold [mm]
IF(IndOutputs(I).EQ.11) Outputs(k,I)=Glocalmax ! Glocalmax ! local melt threshold for hysteresis [mm] IF(IndOutputs(I).EQ.11) Outputs(k,I)=Glocalmax ! Glocalmax ! local melt threshold for hysteresis [mm]
......
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment