Skip to content

GitLab

  • Menu
Projects Groups Snippets
    • Loading...
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
    • Contribute to GitLab
  • Sign in / Register
  • L lidaRtRee_tutorials
  • Project information
    • Project information
    • Activity
    • Labels
    • Members
  • Repository
    • Repository
    • Files
    • Commits
    • Branches
    • Tags
    • Contributors
    • Graph
    • Compare
  • Issues 0
    • Issues 0
    • List
    • Boards
    • Service Desk
    • Milestones
  • Deployments
    • Deployments
    • Releases
  • Monitor
    • Monitor
    • Incidents
  • Packages & Registries
    • Packages & Registries
    • Package Registry
    • Infrastructure Registry
  • Analytics
    • Analytics
    • Value stream
    • Repository
  • Wiki
    • Wiki
  • Activity
  • Graph
  • Create a new issue
  • Commits
  • Issue Boards
Collapse sidebar
  • Monnet Jean-Matthieu
  • lidaRtRee_tutorials
  • Wiki
  • ALS data preprocessing

Last edited by Monnet Jean-Matthieu Jul 19, 2022
Page history
This is an old version of this page. You can view the most recent version or browse the history.

ALS data preprocessing

This workflow proposes R functions for checking and preprocessing Airborne Laser Scanning (lidar remote sensing) data. It is based on functions from R package lidR, and it includes the following steps:

  • check the content of one file,
  • create images and statistics from multiple files,
  • compute digital surface models.

The following files are provided:

  • Rmarkdown source,
  • ALS data preprocessing tutorial in html,
  • a bibliography file
  • datasets required to run the source code are also available on the repository.

Changelog

  • May 24, 2022: switch to terra and sf to comply with new version of lidR and lidaRtRee
  • Dec. 27, 2021: future.apply package used for parallelization
  • Sept. 21, 2021: first release
Clone repository
  • ABA data preparation
  • ABA mapping and inference
  • ABA model calibration
  • ALS data preprocessing
  • Area based approach
  • Field plot coregistration with ALS data
  • Forest gaps and edges detection
  • Forest structure metrics mapping
  • Tree segmentation
  • Home