"qt-linguist-setup" did not exist on "6c9481296b2aa8c48ccdc0719cc7f26e9cad624a"
Newer
Older
created on January 6, 2020.
Updates May 2022, Oct 2022.
Ohmpi.py is a program to control a low-cost and open hardware resistivity meter OhmPi that has been developed by
Olivier Kaufmann
committed
Rémi CLEMENT (INRAE), Vivien DUBOIS (INRAE), Hélène GUYARD (IGE), Nicolas FORQUET (INRAE), Yannick FARGIER (IFSTTAR)

Guillaume Blanchy
committed
Olivier KAUFMANN (UMONS), Arnaud WATELET (UMONS) and Guillaume BLANCHY (FNRS/ULiege).
Olivier Kaufmann
committed
from utils import get_platform
from datetime import datetime
from termcolor import colored
import threading
from logging_setup import setup_loggers
Olivier Kaufmann
committed
from config import MQTT_CONTROL_CONFIG, OHMPI_CONFIG, EXEC_LOGGING_CONFIG
from logging import DEBUG
Olivier Kaufmann
committed
# finish import (done only when class is instantiated as some libs are only available on arm64 platform)
Olivier Kaufmann
committed
import board # noqa
import busio # noqa
import adafruit_tca9548a # noqa
import adafruit_ads1x15.ads1115 as ads # noqa
from adafruit_ads1x15.analog_in import AnalogIn # noqa
Olivier Kaufmann
committed
from adafruit_mcp230xx.mcp23008 import MCP23008 # noqa
from adafruit_mcp230xx.mcp23017 import MCP23017 # noqa
import digitalio # noqa
from digitalio import Direction # noqa
from gpiozero import CPUTemperature # noqa
arm64_imports = True
Olivier Kaufmann
committed
if EXEC_LOGGING_CONFIG['logging_level'] == DEBUG:
print(colored(f'Import error: {error}', 'yellow'))
arm64_imports = False
except Exception as error:
print(colored(f'Unexpected error: {error}', 'red'))
exit()
Olivier Kaufmann
committed
""" OhmPi class.
def __init__(self, settings=None, sequence=None, use_mux=False, mqtt=True, on_pi=None, idps=False):
Olivier Kaufmann
committed
"""Constructs the ohmpi object
Olivier Kaufmann
committed
Olivier Kaufmann
committed
Parameters
----------
settings:
sequence:
use_mux:
if True use the multiplexor to select active electrodes
mqtt: bool, defaut: True
if True publish on mqtt topics while logging, otherwise use other loggers only
on_pi: bool,None default: None
Olivier Kaufmann
committed
if None, the platform on which the class is instantiated is determined to set on_pi to either True or False.
if False the behaviour of an ohmpi will be partially emulated and return random data.
Olivier Kaufmann
committed
idps:
if true uses the DPS
"""
Olivier Kaufmann
committed
Olivier Kaufmann
committed
_, on_pi = get_platform()
self.on_pi = on_pi # True if run from the RaspberryPi with the hardware, otherwise False for random data
self.status = 'idle' # either running or idle
self.thread = None # contains the handle for the thread taking the measurement
Olivier Kaufmann
committed
# set loggers
Olivier Kaufmann
committed
config_exec_logger, _, config_data_logger, _, _, msg = setup_loggers(mqtt=mqtt) # TODO: add SOH
Olivier Kaufmann
committed
self.data_logger = config_data_logger
self.exec_logger = config_exec_logger
Olivier Kaufmann
committed
self.soh_logger = None # TODO: Implement the SOH logger
print(msg)
Olivier Kaufmann
committed
# read in hardware parameters (config.py)
self._read_hardware_config()
# default acquisition settings
self.settings = {
rpi2.0
committed
'nb_meas': 1,
'sequence_delay': 1,
'nb_stack': 1,
'export_path': 'data/measurement.csv'
# read in acquisition settings
if settings is not None:
self.exec_logger.debug('Initialized with settings:' + str(self.settings))
Olivier Kaufmann
committed
if sequence is not None:
remi.clement@inrae.fr
committed
self.idps = idps # flag to use dps for injection or not
self.i2c = busio.I2C(board.SCL, board.SDA) # noqa
# I2C connexion to MCP23008, for current injection
self.mcp = MCP23008(self.i2c, address=0x20)
# ADS1115 for current measurement (AB)
self.ads_current_address = 0x48
self.ads_current = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=self.ads_current_address)
self.ads_voltage_address = 0x49
self.ads_voltage = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=self.ads_voltage_address)
# current injection module
remi.clement@inrae.fr
committed
if self.idps:
Olivier Kaufmann
committed
self.DPS = minimalmodbus.Instrument(port='/dev/ttyUSB0', slaveaddress=1) # port name, address (decimal)
remi.clement@inrae.fr
committed
self.DPS.serial.baudrate = 9600 # Baud rate 9600 as listed in doc
Olivier Kaufmann
committed
self.DPS.serial.timeout = 1 # greater than 0.5 for it to work
self.DPS.debug = False #
self.DPS.serial.parity = 'N' # No parity
self.DPS.mode = minimalmodbus.MODE_RTU # RTU mode
remi.clement@inrae.fr
committed
self.DPS.write_register(0x0001, 40, 0) # max current allowed (36 mA for relays)
# (last number) 0 is for mA, 3 is for A
# injection courant and measure (TODO check if it works, otherwise back in run_measurement())
self.pin0 = self.mcp.get_pin(0)
self.pin0.direction = Direction.OUTPUT
self.pin0.value = False
self.pin1 = self.mcp.get_pin(1)
self.pin1.direction = Direction.OUTPUT
self.pin1.value = False
# set controller
self.mqtt = mqtt
self.cmd_id = None
Olivier Kaufmann
committed
if self.mqtt:
import paho.mqtt.client as mqtt_client
import paho.mqtt.publish as publish
Olivier Kaufmann
committed
self.exec_logger.debug(f"Connecting to control topic {MQTT_CONTROL_CONFIG['ctrl_topic']}"
f" on {MQTT_CONTROL_CONFIG['hostname']} broker")
def connect_mqtt() -> mqtt_client:
def on_connect(client, userdata, flags, rc):
if rc == 0:
Olivier Kaufmann
committed
self.exec_logger.debug(f"Successfully connected to control broker:"
f" {MQTT_CONTROL_CONFIG['hostname']}")
Olivier Kaufmann
committed
self.exec_logger.warning(f'Failed to connect to control broker. Return code : {rc}')
Olivier Kaufmann
committed
client = mqtt_client.Client(f"ohmpi_{OHMPI_CONFIG['id']}_listener", clean_session=False)
client.username_pw_set(MQTT_CONTROL_CONFIG['auth'].get('username'),
MQTT_CONTROL_CONFIG['auth']['password'])
client.on_connect = on_connect
Olivier Kaufmann
committed
client.connect(MQTT_CONTROL_CONFIG['hostname'], MQTT_CONTROL_CONFIG['port'])
Olivier Kaufmann
committed
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
try:
self.exec_logger.debug(f"Connecting to control broker: {MQTT_CONTROL_CONFIG['hostname']}")
self.controller = connect_mqtt()
except Exception as e:
self.exec_logger.debug(f'Unable to connect control broker: {e}')
self.controller = None
if self.controller is not None:
self.exec_logger.debug(f"Subscribing to control topic {MQTT_CONTROL_CONFIG['ctrl_topic']}")
try:
self.controller.subscribe(MQTT_CONTROL_CONFIG['ctrl_topic'], MQTT_CONTROL_CONFIG['qos'])
msg = f"Subscribed to control topic {MQTT_CONTROL_CONFIG['ctrl_topic']}" \
f" on {MQTT_CONTROL_CONFIG['hostname']} broker"
self.exec_logger.debug(msg)
print(colored(f'\u2611 {msg}', 'blue'))
except Exception as e:
self.exec_logger.warning(f'Unable to subscribe to control topic : {e}')
self.controller = None
publisher_config = MQTT_CONTROL_CONFIG.copy()
publisher_config['topic'] = MQTT_CONTROL_CONFIG['ctrl_topic']
publisher_config.pop('ctrl_topic')
def on_message(client, userdata, message):
print(message.payload.decode('utf-8'))
command = message.payload.decode('utf-8')
dic = json.loads(command)
if dic['cmd_id'] != self.cmd_id:
self.cmd_id = dic['cmd_id']
self.exec_logger.debug(f'Received command {command}')
Olivier Kaufmann
committed
# payload = json.dumps({'cmd_id': dic['cmd_id'], 'reply': 'ok'})
# publish.single(payload=payload, **publisher_config)
Olivier Kaufmann
committed
self._process_commands(command)
self.controller.on_message = on_message
else:
self.controller = None
self.exec_logger.warning('No connection to control broker.'
' Use python/ipython to interact with OhmPi object...')
"""Gets sequence"""
if self._sequence is not None:
assert isinstance(self._sequence, np.ndarray)
return self._sequence
@sequence.setter
def sequence(self, sequence):
"""Sets sequence"""
if sequence is not None:
assert isinstance(sequence, np.ndarray)
self.use_mux = True
else:
self.use_mux = False
self._sequence = sequence
def _update_acquisition_settings(self, config):
warnings.warn('This function is deprecated, use update_settings() instead.', DeprecationWarning)
"""Updates acquisition settings from a json file or dictionary.
Parameters can be:
- nb_electrodes (number of electrode used, if 4, no MUX needed)
- injection_duration (in seconds)
rpi2.0
committed
- nb_meas (total number of times the sequence will be run)
- sequence_delay (delay in second between each sequence run)
- nb_stack (number of stack for each quadrupole measurement)
- export_path (path where to export the data, timestamp will be added to filename)
Parameters
----------
Olivier Kaufmann
committed
config : str, dict
Path to the .json settings file or dictionary of settings.
status = False
if config is not None:
try:
if isinstance(config, dict):
self.settings.update(config)
else:
with open(config) as json_file:
dic = json.load(json_file)
self.settings.update(dic)
self.exec_logger.debug('Acquisition parameters updated: ' + str(self.settings))
status = True
except Exception as e:
self.exec_logger.warning('Unable to update settings.')
status = False
self.exec_logger.warning('Settings are missing...')
return status
def _read_hardware_config(self):
"""Reads hardware configuration from config.py
self.exec_logger.debug('Getting hardware config')
self.id = OHMPI_CONFIG['id'] # ID of the OhmPi
self.r_shunt = OHMPI_CONFIG['R_shunt'] # reference resistance value in ohm
self.Imax = OHMPI_CONFIG['Imax'] # maximum current
Olivier Kaufmann
committed
self.exec_logger.debug(f'The maximum current cannot be higher than {self.Imax} mA')
self.coef_p2 = OHMPI_CONFIG['coef_p2'] # slope for current conversion for ads.P2, measurement in V/V
self.nb_samples = OHMPI_CONFIG['integer'] # number of samples measured for each stack
self.version = OHMPI_CONFIG['version'] # hardware version
self.max_elec = OHMPI_CONFIG['max_elec'] # maximum number of electrodes
self.board_addresses = OHMPI_CONFIG['board_addresses']
Olivier Kaufmann
committed
self.exec_logger.debug(f'OHMPI_CONFIG = {str(OHMPI_CONFIG)}')
"""Finds quadrupole where A and B are identical.
If A and B are connected to the same electrode, the Pi burns (short-circuit).
Olivier Kaufmann
committed
quads : numpy.ndarray
List of quadrupoles of shape nquad x 4 or 1D vector of shape nquad.
Returns
-------
output : numpy.ndarray 1D array of int
List of index of rows where A and B are identical.
"""
# if we have a 1D array (so only 1 quadrupole), make it a 2D array
if len(quads.shape) == 1:
quads = quads[None, :]
output = np.where(quads[:, 0] == quads[:, 1])[0]
return output
def read_quad(self, filename):
warnings.warn('This function is deprecated. Use load_sequence instead.', DeprecationWarning)
Olivier Kaufmann
committed
self.load_sequence(filename)
Olivier Kaufmann
committed
def load_sequence(self, filename: str):
"""Reads quadrupole sequence from file.
Parameters
----------
filename : str
Path of the .csv or .txt file with A, B, M and N electrodes.
Electrode index start at 1.
Returns
-------
Olivier Kaufmann
committed
sequence : numpy.array
Olivier Kaufmann
committed
self.exec_logger.debug(f'Loading sequence {filename}')
sequence = np.loadtxt(filename, delimiter=" ", dtype=np.uint32) # load quadrupole file
Olivier Kaufmann
committed
if sequence is not None:
Olivier Kaufmann
committed
self.exec_logger.debug(f'Sequence of {sequence.shape[0]:d} quadrupoles read.')
# locate lines where the electrode index exceeds the maximum number of electrodes
Olivier Kaufmann
committed
test_index_elec = np.array(np.where(sequence > self.max_elec))
test_same_elec = self._find_identical_in_line(sequence)
# if statement with exit cases (TODO rajouter un else if pour le deuxième cas du ticket #2)
if test_index_elec.size != 0:
for i in range(len(test_index_elec[0, :])):
Olivier Kaufmann
committed
self.exec_logger.error(f'An electrode index at line {str(test_index_elec[0, i] + 1)} '
f'exceeds the maximum number of electrodes')
Olivier Kaufmann
committed
sequence = None
elif len(test_same_elec) != 0:
for i in range(len(test_same_elec)):
Olivier Kaufmann
committed
self.exec_logger.error(f'An electrode index A == B detected at line {str(test_same_elec[i] + 1)}')
Olivier Kaufmann
committed
sequence = None
Olivier Kaufmann
committed
if sequence is not None:
Olivier Kaufmann
committed
self.exec_logger.info(f'Sequence {filename} of {sequence.shape[0]:d} quadrupoles loaded.')
else:
self.exec_logger.warning(f'Unable to load sequence {filename}')
Olivier Kaufmann
committed
self.sequence = sequence
def _switch_mux(self, electrode_nr, state, role):
Olivier Kaufmann
committed
"""Selects the right channel for the multiplexer cascade for a given electrode.
Parameters
----------
electrode_nr : int
Electrode index to be switched on or off.
state : str
Either 'on' or 'off'.
role : str
Either 'A', 'B', 'M' or 'N', so we can assign it to a MUX board.
"""
Olivier Kaufmann
committed
if not self.use_mux or not self.on_pi:
if not self.on_pi:
self.exec_logger.warning('Cannot reset mux while in simulation mode...')
else:
self.exec_logger.warning('You cannot use the multiplexer because use_mux is set to False.'
' Set use_mux to True to use the multiplexer...')
elif self.sequence is None:
self.exec_logger.warning('Unable to switch MUX without a sequence')
tca = adafruit_tca9548a.TCA9548A(self.i2c, self.board_addresses[role])
# find I2C address of the electrode and corresponding relay
# considering that one MCP23017 can cover 16 electrodes
i2c_address = 7 - (electrode_nr - 1) // 16 # quotient without rest of the division
Olivier Kaufmann
committed
relay_nr = electrode_nr - (electrode_nr // 16) * 16 + 1
if i2c_address is not None:
# select the MCP23017 of the selected MUX board
mcp2 = MCP23017(tca[i2c_address])
mcp2.get_pin(relay_nr - 1).direction = digitalio.Direction.OUTPUT
mcp2.get_pin(relay_nr - 1).value = True
mcp2.get_pin(relay_nr - 1).value = False
Olivier Kaufmann
committed
self.exec_logger.debug(f'Switching relay {relay_nr} '
f'({str(hex(self.board_addresses[role]))}) {state} for electrode {electrode_nr}')
Olivier Kaufmann
committed
self.exec_logger.warning(f'Unable to address electrode nr {electrode_nr}')
Olivier Kaufmann
committed
"""Switches on multiplexer relays for given quadrupole.
Parameters
----------
quadrupole : list of 4 int
List of 4 integers representing the electrode numbers.
"""
roles = ['A', 'B', 'M', 'N']
# another check to be sure A != B
if quadrupole[0] != quadrupole[1]:
self._switch_mux(quadrupole[i], 'on', roles[i])
Olivier Kaufmann
committed
self.exec_logger.error('A == B -> short circuit risk detected!')
Olivier Kaufmann
committed
"""Switches off multiplexer relays for given quadrupole.
Parameters
----------
quadrupole : list of 4 int
List of 4 integers representing the electrode numbers.
"""
roles = ['A', 'B', 'M', 'N']
for i in range(0, 4):
self._switch_mux(quadrupole[i], 'off', roles[i])
Olivier Kaufmann
committed
"""Switches off all multiplexer relays."""
if self.on_pi and self.use_mux:
roles = ['A', 'B', 'M', 'N']
for i in range(0, 4):
for j in range(1, self.max_elec + 1):
self._switch_mux(j, 'off', roles[i])
self.exec_logger.debug('All MUX switched off.')
elif not self.on_pi:
self.exec_logger.warning('Cannot reset mux while in simulation mode...')
else:
self.exec_logger.warning('You cannot use the multiplexer because use_mux is set to False.'
' Set use_mux to True to use the multiplexer...')
Olivier Kaufmann
committed
"""Automatically sets the gain on a channel
channel : object
Instance of ADS where voltage is measured.
Olivier Kaufmann
committed
Gain to be applied on ADS1115.
"""
gain = 2 / 3
if (abs(channel.voltage) < 2.040) and (abs(channel.voltage) >= 1.023):
gain = 2
elif (abs(channel.voltage) < 1.023) and (abs(channel.voltage) >= 0.508):
gain = 4
elif (abs(channel.voltage) < 0.508) and (abs(channel.voltage) >= 0.250):
gain = 8
elif abs(channel.voltage) < 0.256:
gain = 16
self.exec_logger.debug(f'Setting gain to {gain}')
return gain
def _compute_tx_volt(self, best_tx_injtime=0.1, strategy='vmax', tx_volt=5):
Olivier Kaufmann
committed
"""Estimates best Tx voltage based on different strategies.
At first a half-cycle is made for a short duration with a fixed
known voltage. This gives us Iab and Rab. We also measure Vmn.
A constant c = vmn/iab is computed (only depends on geometric
factor and ground resistivity, that doesn't change during a
quadrupole). Then depending on the strategy, we compute which
vab to inject to reach the minimum/maximum Iab current or
min/max Vmn.
This function also compute the polarity on Vmn (on which pin
of the ADS1115 we need to measure Vmn to get the positive value).
Parameters
----------
best_tx_injtime : float, optional
Time in milliseconds for the half-cycle used to compute Rab.
strategy : str, optional
Either:
- vmin : compute Vab to reach a minimum Iab and Vmn
- vmax : compute Vab to reach a maximum Iab and Vmn
- constant : apply given Vab
tx_volt : float, optional
Voltage apply to try to guess the best voltage. 5 V applied
by default. If strategy "constant" is chosen, constant voltage
to applied is "tx_volt".
Returns
-------
vab : float
Proposed Vab according to the given strategy.
polarity : int
Either 1 or -1 to know on which pin of the ADS the Vmn is measured.
# hardware limits
voltage_min = 10 # mV
voltage_max = 4500
current_min = voltage_min / (self.r_shunt * 50) # mA
current_max = voltage_max / (self.r_shunt * 50)
tx_max = 40 # volt
# check of volt
volt = tx_volt
if volt > tx_max:
print('sorry, cannot inject more than 40 V, set it back to 5 V')
volt = 5
# redefined the pin of the mcp (needed when relays are connected)
self.pin0 = self.mcp.get_pin(0)
self.pin0.direction = Direction.OUTPUT
self.pin0.value = False
self.pin1 = self.mcp.get_pin(1)
self.pin1.direction = Direction.OUTPUT
self.pin1.value = False
# select a polarity to start with
self.pin0.value = True
self.pin1.value = False
Olivier Kaufmann
committed
self.DPS.write_register(0x09, 1) # DPS5005 on
time.sleep(best_tx_injtime) # inject for given tx time
self.ads_current = ads.ADS1115(self.i2c, gain=2/3, data_rate=860, address=self.ads_current_address)
self.ads_voltage = ads.ADS1115(self.i2c, gain=2/3, data_rate=860, address=self.ads_voltage_address)
Olivier Kaufmann
committed
# print('current P0', AnalogIn(self.ads_current, ads.P0).voltage)
# print('voltage P0', AnalogIn(self.ads_voltage, ads.P0).voltage)
# print('voltage P2', AnalogIn(self.ads_voltage, ads.P2).voltage)
gain_current = self._gain_auto(AnalogIn(self.ads_current, ads.P0))
gain_voltage0 = self._gain_auto(AnalogIn(self.ads_voltage, ads.P0))
gain_voltage2 = self._gain_auto(AnalogIn(self.ads_voltage, ads.P2))
gain_voltage = np.min([gain_voltage0, gain_voltage2])
Olivier Kaufmann
committed
# print('gain current: {:.3f}, gain voltage: {:.3f}'.format(gain_current, gain_voltage))
self.ads_current = ads.ADS1115(self.i2c, gain=gain_current, data_rate=860, address=self.ads_current_address)
self.ads_voltage = ads.ADS1115(self.i2c, gain=gain_voltage, data_rate=860, address=self.ads_voltage_address)
# we measure the voltage on both A0 and A2 to guess the polarity
Olivier Kaufmann
committed
I = AnalogIn(self.ads_current, ads.P0).voltage * 1000. / 50 / self.r_shunt # measure current
U0 = AnalogIn(self.ads_voltage, ads.P0).voltage * 1000. # measure voltage
U2 = AnalogIn(self.ads_voltage, ads.P2).voltage * 1000.
Olivier Kaufmann
committed
# print('I (mV)', I*50*self.r_shunt)
# print('I (mA)', I)
# print('U0 (mV)', U0)
# print('U2 (mV)', U2)
# check polarity
polarity = 1 # by default, we guessed it right
vmn = U0
Olivier Kaufmann
committed
if U0 < 0: # we guessed it wrong, let's use a correction factor
Olivier Kaufmann
committed
# print('polarity', polarity)
Olivier Kaufmann
committed
Rab = (volt * 1000.) / I
Olivier Kaufmann
committed
self.exec_logger.debug(f'Rab = {Rab:.2f} Ohms')
# implement different strategy
if strategy == 'vmax':
vmn_max = c * current_max
Olivier Kaufmann
committed
if voltage_max > vmn_max > voltage_min:
else:
iab = voltage_max / c
vab = iab * Rab
Olivier Kaufmann
committed
if vab > 25000.:
vab = 25000.
vab = vab / 1000. * 0.9
elif strategy == 'vmin':
vmn_min = c * current_min
Olivier Kaufmann
committed
if voltage_min < vmn_min < voltage_max:
iab = voltage_min / c
vab = iab * Rab
Olivier Kaufmann
committed
if vab < 1000.:
vab = 1000.
vab = vab / 1000. * 1.1
elif strategy == 'constant':
vab = volt
else:
vab = 5
Olivier Kaufmann
committed
# self.DPS.write_register(0x09, 0) # DPS5005 off
self.pin0.value = False
self.pin1.value = False
def run_measurement(self, quad=None, nb_stack=None, injection_duration=None,
autogain=True, strategy='constant', tx_volt=5, best_tx_injtime=0.1,
cmd_id=None):
Olivier Kaufmann
committed
"""Measures on a quadrupole and returns transfer resistance.
quad : iterable (list of int)
Quadrupole to measure, just for labelling. Only switch_mux_on/off
really create the route to the electrodes.
remi.clement@inrae.fr
committed
Number of stacks. A stacl is considered two half-cycles (one
positive, one negative).
injection_duration : int, optional
remi.clement@inrae.fr
committed
autogain : bool, optional
If True, will adapt the gain of the ADS1115 to maximize the
resolution of the reading.
(V3.0 only) If we search for best voltage (tx_volt == 0), we can choose
Olivier Kaufmann
committed
- vmin: find the lowest voltage that gives us a signal
- vmax: find the highest voltage that stays in the range
For a constant value, just set the tx_volt.
(V3.0 only) If specified, voltage will be imposed. If 0, we will look
Olivier Kaufmann
committed
for the best voltage. If the best Tx cannot be found, no
measurement will be taken and values will be NaN.
best_tx_injtime : float, optional
(V3.0 only) Injection time in seconds used for finding the best voltage.

Guillaume Blanchy
committed
self.exec_logger.debug('Starting measurement')
self.exec_logger.info('Waiting for data')
if quad is None:
quad = [0, 0, 0, 0]
if self.on_pi:
if nb_stack is None:
nb_stack = self.settings['nb_stack']
if injection_duration is None:
injection_duration = self.settings['injection_duration']
# inner variable initialization
sum_vmn = 0
sum_ps = 0
# let's define the pin again as if we run through measure()
# as it's run in another thread, it doesn't consider these
# and this can lead to short circuit!
self.pin0 = self.mcp.get_pin(0)
self.pin0.direction = Direction.OUTPUT
self.pin1 = self.mcp.get_pin(1)
self.pin1.direction = Direction.OUTPUT
# get best voltage to inject AND polarity
if self.idps:
tx_volt, polarity = self._compute_tx_volt(
best_tx_injtime=best_tx_injtime, strategy=strategy, tx_volt=tx_volt)
Olivier Kaufmann
committed
self.exec_logger.debug(f'Best vab found is {tx_volt:.3f}V')
# first reset the gain to 2/3 before trying to find best gain (mode 0 is continuous)
Olivier Kaufmann
committed
self.ads_current = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860,
address=self.ads_current_address, mode=0)
self.ads_voltage = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860,
address=self.ads_voltage_address, mode=0)
Olivier Kaufmann
committed
self.DPS.write_register(0x0000, tx_volt, 2) # set tx voltage in V
self.DPS.write_register(0x09, 1) # DPS5005 on
self.exec_logger.debug('No best voltage found, will not take measurement')
Olivier Kaufmann
committed
out_of_range = True
Olivier Kaufmann
committed
if not out_of_range: # we found a Vab in the range so we measure
remi.clement@inrae.fr
committed
self.pin0.value = True
self.pin1.value = False
gain_current = self._gain_auto(AnalogIn(self.ads_current, ads.P0))
gain_voltage = self._gain_auto(AnalogIn(self.ads_voltage, ads.P0))
remi.clement@inrae.fr
committed
else:
gain_voltage = self._gain_auto(AnalogIn(self.ads_voltage, ads.P2))
Olivier Kaufmann
committed
self.exec_logger.debug(f'Gain current: {gain_current:.3f}, gain voltage: {gain_voltage:.3f}')
self.ads_current = ads.ADS1115(self.i2c, gain=gain_current, data_rate=860,
address=self.ads_current_address, mode=0)
self.ads_voltage = ads.ADS1115(self.i2c, gain=gain_voltage, data_rate=860,
address=self.ads_voltage_address, mode=0)
# one stack = 2 half-cycles (one positive, one negative)
pinMN = 0 if polarity > 0 else 2
# sampling for each stack at the end of the injection
sampling_interval = 10 # ms
self.nb_samples = int(injection_duration * 1000 // sampling_interval) + 1
# we sample every 10 ms (as using AnalogIn for both current
# and voltage takes about 7 ms). When we go over the injection
# duration, we break the loop and truncate the meas arrays
# only the last values in meas will be taken into account
start_time = time.time() # start counter
for n in range(0, nb_stack * 2): # for each half-cycles
# current injection
if (n % 2) == 0:
self.pin0.value = True
self.pin1.value = False
else:
self.pin0.value = False
self.pin1.value = True # current injection nr2
Olivier Kaufmann
committed
self.exec_logger.debug(f'Stack {n} {self.pin0.value} {self.pin1.value}')
# measurement of current i and voltage u during injection
meas = np.zeros((self.nb_samples, 3)) * np.nan
start_delay = time.time() # stating measurement time
dt = 0
for k in range(0, self.nb_samples):
# reading current value on ADS channels
meas[k, 0] = (AnalogIn(self.ads_current, ads.P0).voltage * 1000) / (50 * self.r_shunt)
if self.board_version == '22.11':
if pinMN == 0:
meas[k, 1] = AnalogIn(self.ads_voltage, ads.P0).voltage * 1000
else:
Olivier Kaufmann
committed
meas[k, 1] = -AnalogIn(self.ads_voltage, ads.P2).voltage * 1000
meas[k, 1] = -AnalogIn(self.ads_voltage, ads.P0, ads.P1).voltage * self.coef_p2 * 1000
Olivier Kaufmann
committed
# else:
Olivier Kaufmann
committed
# self.exec_logger.debug('Unknown board')
time.sleep(sampling_interval / 1000)
dt = time.time() - start_delay # real injection time (s)
meas[k, 2] = time.time() - start_time
Olivier Kaufmann
committed
if dt > (injection_duration - 0 * sampling_interval / 1000.):
# stop current injection
self.pin0.value = False
self.pin1.value = False
end_delay = time.time()
# truncate the meas array if we didn't fill the last samples
meas = meas[:k+1]
# measurement of current i and voltage u during off time
measpp = np.zeros((meas.shape[0], 3)) * np.nan
start_delay = time.time() # stating measurement time
dt = 0
for k in range(0, measpp.shape[0]):
# reading current value on ADS channels
Olivier Kaufmann
committed
measpp[k, 0] = (AnalogIn(self.ads_current, ads.P0).voltage * 1000.) / (50 * self.r_shunt)
Olivier Kaufmann
committed
measpp[k, 1] = AnalogIn(self.ads_voltage, ads.P0).voltage * 1000.
Olivier Kaufmann
committed
measpp[k, 1] = AnalogIn(self.ads_voltage, ads.P2).voltage * 1000. * -1
Olivier Kaufmann
committed
measpp[k, 1] = -AnalogIn(self.ads_voltage, ads.P0, ads.P1).voltage * self.coef_p2 * 1000.
else:
self.exec_logger.debug('unknown board')
time.sleep(sampling_interval / 1000)
dt = time.time() - start_delay # real injection time (s)
measpp[k, 2] = time.time() - start_time
Olivier Kaufmann
committed
if dt > (injection_duration - 0 * sampling_interval / 1000.):
# truncate the meas array if we didn't fill the last samples
measpp = measpp[:k+1]
# we alternate on which ADS1115 pin we measure because of sign of voltage
# store data for full wave form
fulldata.append(meas)
fulldata.append(measpp)
# TODO get battery voltage and warn if battery is running low
# TODO send a message on SOH stating the battery level
# let's do some calculation (out of the stacking loop)
for n, meas in enumerate(fulldata[::2]):
# take average from the samples per stack, then sum them all
# average for the last third of the stacked values
# is done outside the loop
sum_i = sum_i + (np.mean(meas[-int(meas.shape[0]//3):, 0]))
vmn1 = np.mean(meas[-int(meas.shape[0]//3), 1])
if (n % 2) == 0:
sum_vmn = sum_vmn - vmn1
sum_ps = sum_ps + vmn1
else:
sum_vmn = sum_vmn + vmn1
sum_ps = sum_ps + vmn1
else:
sum_i = np.nan
sum_vmn = np.nan
sum_ps = np.nan
remi.clement@inrae.fr
committed
if self.idps:
self.DPS.write_register(0x0000, 0, 2) # reset to 0 volt
Olivier Kaufmann
committed
self.DPS.write_register(0x09, 0) # DPS5005 off
# reshape full data to an array of good size
# we need an array of regular size to save in the csv
Olivier Kaufmann
committed
if not out_of_range:
fulldata = np.vstack(fulldata)
# we create a big enough array given nb_samples, number of
# half-cycles (1 stack = 2 half-cycles), and twice as we
# measure decay as well
a = np.zeros((nb_stack * self.nb_samples * 2 * 2, 3)) * np.nan
a[:fulldata.shape[0], :] = fulldata
fulldata = a
else:
np.array([[]])
# create a dictionary and compute averaged values from all stacks
d = {
"time": datetime.now().isoformat(),
"A": quad[0],
"B": quad[1],
"M": quad[2],
"N": quad[3],
Olivier Kaufmann
committed
"inj time [ms]": (end_delay - start_delay) * 1000. if not out_of_range else 0.,
"Vmn [mV]": sum_vmn / (2 * nb_stack),
"I [mA]": sum_i / (2 * nb_stack),
"R [ohm]": sum_vmn / sum_i,
"Ps [mV]": sum_ps / (2 * nb_stack),
Olivier Kaufmann
committed
"Tx [V]": tx_volt if not out_of_range else 0.,
"CPU temp [degC]": CPUTemperature().temperature,
"Nb samples [-]": self.nb_samples,
"fulldata": fulldata,
else: # for testing, generate random data
d = {'time': datetime.now().isoformat(), 'A': quad[0], 'B': quad[1], 'M': quad[2], 'N': quad[3],
'R [ohm]': np.abs(np.random.randn(1)).tolist()}
dd.update({'A': str(dd['A'])})
dd.update({'B': str(dd['B'])})
dd.update({'M': str(dd['M'])})
dd.update({'N': str(dd['N'])})
# round float to 2 decimal
for key in dd.keys():
if isinstance(dd[key], float):
dd[key] = np.round(dd[key], 3)
dd['cmd_id'] = str(cmd_id)
self.data_logger.info(dd)
Olivier Kaufmann
committed
"""Checks contact resistances"""
# we only check the electrodes which are in the sequence (not all might be connected)
quads = np.array([[1, 2, 1, 2]], dtype=np.uint32)
Olivier Kaufmann
committed
else:
elec = np.sort(np.unique(self.sequence.flatten())) # assumed order
quads = np.vstack([
elec[:-1],
elec[1:],
elec[:-1],
elec[1:],
]).T
if self.idps:
quads[:, 2:] = 0 # we don't open Vmn to prevent burning the MN part
# as it has a smaller range of accepted voltage
export_path_rs = self.settings['export_path'].replace('.csv', '') \
+ '_' + datetime.now().strftime('%Y%m%dT%H%M%S') + '_rs.csv'

Guillaume Blanchy
committed
Olivier Kaufmann
committed
# self.run = True
if self.on_pi:
# make sure all mux are off to start with
self.reset_mux()
# measure all quad of the RS sequence
for i in range(0, quads.shape[0]):
quad = quads[i, :] # quadrupole
self.switch_mux_on(quad) # put before raising the pins (otherwise conflict i2c)
d = self.run_measurement(quad=quad, nb_stack=1, injection_duration=1, tx_volt=tx_volt, autogain=False)
Olivier Kaufmann
committed
voltage = tx_volt * 1000. # imposed voltage on dps5005
else:
voltage = d['Vmn [mV]']
current = d['I [mA]']
# compute resistance measured (= contact resistance)
Olivier Kaufmann
committed
resist = abs(voltage / current) / 1000.
# print(str(quad) + '> I: {:>10.3f} mA, V: {:>10.3f} mV, R: {:>10.3f} kOhm'.format(
msg = f'Contact resistance {str(quad):s}: I: {current * 1000.:>10.3f} mA, ' \
f'V: {voltage :>10.3f} mV, ' \
f'R: {resist :>10.3f} kOhm'
self.exec_logger.debug(msg)
# if contact resistance = 0 -> we have a short circuit!!
Olivier Kaufmann
committed
msg = f'!!!SHORT CIRCUIT!!! {str(quad):s}: {resist:.3f} kOhm'
self.exec_logger.warning(msg)
# save data and print in a text file
self.append_and_save(export_path_rs, {
'A': quad[0],
'B': quad[1],
})
# close mux path and put pin back to GND
self.switch_mux_off(quad)
else:
pass

Guillaume Blanchy
committed
#
# # TODO if interrupted, we would need to restore the values
# # TODO or we offer the possibility in 'run_measurement' to have rs_check each time?
Olivier Kaufmann
committed
def append_and_save(filename, last_measurement):
Olivier Kaufmann
committed
"""Appends and saves the last measurement dict.
Olivier Kaufmann
committed
filename : str
filename to save the last measurement dataframe
last_measurement : dict
Last measurement taken in the form of a python dictionary
last_measurement = deepcopy(last_measurement)
if 'fulldata' in last_measurement:
d = last_measurement['fulldata']
n = d.shape[0]
if n > 1:
Olivier Kaufmann
committed
idic = dict(zip(['i' + str(i) for i in range(n)], d[:, 0]))
udic = dict(zip(['u' + str(i) for i in range(n)], d[:, 1]))
tdic = dict(zip(['t' + str(i) for i in range(n)], d[:, 2]))
last_measurement.update(idic)
last_measurement.update(udic)
last_measurement.update(tdic)
last_measurement.pop('fulldata')
Olivier Kaufmann
committed
if os.path.isfile(filename):
Olivier Kaufmann
committed
with open(filename, 'a') as f:
w = csv.DictWriter(f, last_measurement.keys())
w.writerow(last_measurement)
# last_measurement.to_csv(f, header=False)
Olivier Kaufmann
committed
with open(filename, 'a') as f:
w = csv.DictWriter(f, last_measurement.keys())
w.writeheader()
w.writerow(last_measurement)
def _process_commands(self, message):
Olivier Kaufmann
committed
"""Processes commands received from the controller(s)