ohmpi.py 54 KB
Newer Older
# -*- coding: utf-8 -*-
Clement Remi's avatar
Clement Remi committed
"""
created on January 6, 2020.
Ohmpi.py is a program to control a low-cost and open hardware resistivity meter OhmPi that has been developed by
Rémi CLEMENT (INRAE), Vivien DUBOIS (INRAE), Hélène GUYARD (IGE), Nicolas FORQUET (INRAE), Yannick FARGIER (IFSTTAR)
Olivier KAUFMANN (UMONS), Arnaud WATELET (UMONS) and Guillaume BLANCHY (FNRS/ULiege).
Clement Remi's avatar
Clement Remi committed
"""

import json
import warnings
from copy import deepcopy
import numpy as np
import time
from datetime import datetime
from termcolor import colored
from logging_setup import setup_loggers
from config import MQTT_CONTROL_CONFIG, OHMPI_CONFIG, EXEC_LOGGING_CONFIG
from logging import DEBUG
# finish import (done only when class is instantiated as some libs are only available on arm64 platform)
    import board  # noqa
    import busio  # noqa
    import adafruit_tca9548a  # noqa
    import adafruit_ads1x15.ads1115 as ads  # noqa
    from adafruit_ads1x15.analog_in import AnalogIn  # noqa
    from adafruit_mcp230xx.mcp23008 import MCP23008  # noqa
    from adafruit_mcp230xx.mcp23017 import MCP23017  # noqa
    import digitalio  # noqa
    from digitalio import Direction  # noqa
    from gpiozero import CPUTemperature  # noqa
except ImportError as error:
    if EXEC_LOGGING_CONFIG['logging_level'] == DEBUG:
        print(colored(f'Import error: {error}', 'yellow'))
except Exception as error:
    print(colored(f'Unexpected error: {error}', 'red'))
Clement Remi's avatar
Clement Remi committed

Guillaume Blanchy's avatar
Guillaume Blanchy committed
class OhmPi(object):
    def __init__(self, settings=None, sequence=None, use_mux=False, mqtt=True, onpi=None, idps=False):
        Parameters
        ----------
        settings:

        sequence:

        use_mux:
            if True use the multiplexor to select active electrodes
        mqtt: bool, defaut: True
            if True publish on mqtt topics while logging, otherwise use other loggers only
            if None, the platform on which the class is instantiated is determined to set on_pi to either True or False.
            if False the behaviour of an ohmpi will be partially emulated and return random data.
        self._sequence = sequence
Olivier Kaufmann's avatar
Olivier Kaufmann committed
        self.use_mux = use_mux
        self.on_pi = onpi  # True if run from the RaspberryPi with the hardware, otherwise False for random data
Guillaume Blanchy's avatar
Guillaume Blanchy committed
        self.status = 'idle'  # either running or idle
        self.thread = None  # contains the handle for the thread taking the measurement
        config_exec_logger, _, config_data_logger, _, _, msg = setup_loggers(mqtt=mqtt)  # TODO: add SOH
        self.data_logger = config_data_logger
        self.exec_logger = config_exec_logger
        self.soh_logger = None  # TODO: Implement the SOH logger
        print(msg)
        # read in hardware parameters (config.py)
        self._read_hardware_config()
        # default acquisition settings
        self.settings = {
            'injection_duration': 0.2,
            'sequence_delay': 1,
            'nb_stack': 1,
            'export_path': 'data/measurement.csv'
Guillaume Blanchy's avatar
Guillaume Blanchy committed
        }
        # read in acquisition settings
        if settings is not None:
            self.update_settings(settings)
        self.exec_logger.debug('Initialized with settings:' + str(self.settings))
Guillaume Blanchy's avatar
Guillaume Blanchy committed
        # read quadrupole sequence
Olivier Kaufmann's avatar
Olivier Kaufmann committed
            self.load_sequence(sequence)
        self.idps = idps  # flag to use dps for injection or not
Guillaume Blanchy's avatar
Guillaume Blanchy committed
        # connect to components on the OhmPi board
Guillaume Blanchy's avatar
Guillaume Blanchy committed
            # activation of I2C protocol
            self.i2c = busio.I2C(board.SCL, board.SDA)  # noqa
Guillaume Blanchy's avatar
Guillaume Blanchy committed

            # I2C connexion to MCP23008, for current injection
            self.mcp = MCP23008(self.i2c, address=0x20)

            # ADS1115 for current measurement (AB)
            self.ads_current_address = 0x48
            self.ads_current = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=self.ads_current_address)
Guillaume Blanchy's avatar
Guillaume Blanchy committed

            # ADS1115 for voltage measurement (MN)
            self.ads_voltage_address = 0x49
            self.ads_voltage = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=self.ads_voltage_address)
                self.DPS = minimalmodbus.Instrument(port='/dev/ttyUSB0', slaveaddress=1)  # port name, address (decimal)
                self.DPS.serial.baudrate = 9600  # Baud rate 9600 as listed in doc
                self.DPS.serial.bytesize = 8  #
                self.DPS.serial.timeout = 1  # greater than 0.5 for it to work
                self.DPS.debug = False  #
                self.DPS.serial.parity = 'N'  # No parity
                self.DPS.mode = minimalmodbus.MODE_RTU  # RTU mode
                self.DPS.write_register(0x0001, 40, 0)  # max current allowed (36 mA for relays)
            # injection courant and measure (TODO check if it works, otherwise back in run_measurement())
            self.pin0 = self.mcp.get_pin(0)
            self.pin0.direction = Direction.OUTPUT
            self.pin0.value = False
            self.pin1 = self.mcp.get_pin(1)
            self.pin1.direction = Direction.OUTPUT
            self.pin1.value = False

        # set controller
        self.mqtt = mqtt
        self.cmd_id = None
        if self.mqtt:
            import paho.mqtt.client as mqtt_client

            self.exec_logger.debug(f"Connecting to control topic {MQTT_CONTROL_CONFIG['ctrl_topic']}"
                                   f" on {MQTT_CONTROL_CONFIG['hostname']} broker")

            def connect_mqtt() -> mqtt_client:
                def on_connect(mqttclient, userdata, flags, rc):
                        self.exec_logger.debug(f"Successfully connected to control broker:"
                                               f" {MQTT_CONTROL_CONFIG['hostname']}")
                        self.exec_logger.warning(f'Failed to connect to control broker. Return code : {rc}')
                client = mqtt_client.Client(f"ohmpi_{OHMPI_CONFIG['id']}_listener", clean_session=False)
                client.username_pw_set(MQTT_CONTROL_CONFIG['auth'].get('username'),
                                       MQTT_CONTROL_CONFIG['auth']['password'])
                client.on_connect = on_connect
                client.connect(MQTT_CONTROL_CONFIG['hostname'], MQTT_CONTROL_CONFIG['port'])
            try:
                self.exec_logger.debug(f"Connecting to control broker: {MQTT_CONTROL_CONFIG['hostname']}")
                self.controller = connect_mqtt()
            except Exception as e:
                self.exec_logger.debug(f'Unable to connect control broker: {e}')
                self.controller = None
            if self.controller is not None:
                self.exec_logger.debug(f"Subscribing to control topic {MQTT_CONTROL_CONFIG['ctrl_topic']}")
                try:
                    self.controller.subscribe(MQTT_CONTROL_CONFIG['ctrl_topic'], MQTT_CONTROL_CONFIG['qos'])

                    msg = f"Subscribed to control topic {MQTT_CONTROL_CONFIG['ctrl_topic']}" \
                          f" on {MQTT_CONTROL_CONFIG['hostname']} broker"
                    self.exec_logger.debug(msg)
                    print(colored(f'\u2611 {msg}', 'blue'))
                except Exception as e:
                    self.exec_logger.warning(f'Unable to subscribe to control topic : {e}')
                    self.controller = None
                publisher_config = MQTT_CONTROL_CONFIG.copy()
                publisher_config['topic'] = MQTT_CONTROL_CONFIG['ctrl_topic']
                publisher_config.pop('ctrl_topic')

                def on_message(client, userdata, message):
                    command = message.payload.decode('utf-8')
                    self.exec_logger.debug(f'Received command {command}')
                    self._process_commands(command)

                self.controller.on_message = on_message
            else:
                self.controller = None
                self.exec_logger.warning('No connection to control broker.'
                                         ' Use python/ipython to interact with OhmPi object...')
    def append_and_save(filename: str, last_measurement: dict, cmd_id=None):
        """Appends and saves the last measurement dict.
        filename : str
            filename to save the last measurement dataframe
        last_measurement : dict
            Last measurement taken in the form of a python dictionary
        """
        last_measurement = deepcopy(last_measurement)
        if 'fulldata' in last_measurement:
            d = last_measurement['fulldata']
            n = d.shape[0]
            if n > 1:
                idic = dict(zip(['i' + str(i) for i in range(n)], d[:, 0]))
                udic = dict(zip(['u' + str(i) for i in range(n)], d[:, 1]))
                tdic = dict(zip(['t' + str(i) for i in range(n)], d[:, 2]))
                last_measurement.update(idic)
                last_measurement.update(udic)
                last_measurement.update(tdic)
            last_measurement.pop('fulldata')
        if os.path.isfile(filename):
            # Load data file and append data to it
            with open(filename, 'a') as f:
                w = csv.DictWriter(f, last_measurement.keys())
                w.writerow(last_measurement)
                # last_measurement.to_csv(f, header=False)
        else:
            # create data file and add headers
            with open(filename, 'a') as f:
                w = csv.DictWriter(f, last_measurement.keys())
                w.writeheader()
                w.writerow(last_measurement)
    def _compute_tx_volt(self, best_tx_injtime=0.1, strategy='vmax', tx_volt=5):
        """Estimates best Tx voltage based on different strategies.
        At first a half-cycle is made for a short duration with a fixed
        known voltage. This gives us Iab and Rab. We also measure Vmn.
        A constant c = vmn/iab is computed (only depends on geometric
        factor and ground resistivity, that doesn't change during a
        quadrupole). Then depending on the strategy, we compute which
        vab to inject to reach the minimum/maximum Iab current or
        min/max Vmn.
        This function also compute the polarity on Vmn (on which pin
        of the ADS1115 we need to measure Vmn to get the positive value).
Guillaume Blanchy's avatar
Guillaume Blanchy committed

        Parameters
        ----------
        best_tx_injtime : float, optional
            Time in milliseconds for the half-cycle used to compute Rab.
        strategy : str, optional
            Either:
            - vmin : compute Vab to reach a minimum Iab and Vmn
            - vmax : compute Vab to reach a maximum Iab and Vmn
            - constant : apply given Vab
        tx_volt : float, optional
            Voltage apply to try to guess the best voltage. 5 V applied
            by default. If strategy "constant" is chosen, constant voltage
            to applied is "tx_volt".

        Returns
        -------
        vab : float
            Proposed Vab according to the given strategy.
        polarity : int
            Either 1 or -1 to know on which pin of the ADS the Vmn is measured.
Guillaume Blanchy's avatar
Guillaume Blanchy committed
        """

        # hardware limits
        voltage_min = 10.  # mV
        voltage_max = 4500.
        current_min = voltage_min / (self.r_shunt * 50)  # mA
        current_max = voltage_max / (self.r_shunt * 50)
        tx_max = 40.  # volt

        # check of volt
        volt = tx_volt
        if volt > tx_max:
            self.exec_logger.warning('Sorry, cannot inject more than 40 V, set it back to 5 V')
            volt = 5.

        # redefined the pin of the mcp (needed when relays are connected)
        self.pin0 = self.mcp.get_pin(0)
        self.pin0.direction = Direction.OUTPUT
        self.pin0.value = False
        self.pin1 = self.mcp.get_pin(1)
        self.pin1.direction = Direction.OUTPUT
        self.pin1.value = False

        # select a polarity to start with
        self.pin0.value = True
        self.pin1.value = False

        # set voltage for test
        self.DPS.write_register(0x0000, volt, 2)
        self.DPS.write_register(0x09, 1)  # DPS5005 on
        time.sleep(best_tx_injtime)  # inject for given tx time

        # autogain
        self.ads_current = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=self.ads_current_address)
        self.ads_voltage = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=self.ads_voltage_address)
        # print('current P0', AnalogIn(self.ads_current, ads.P0).voltage)
        # print('voltage P0', AnalogIn(self.ads_voltage, ads.P0).voltage)
        # print('voltage P2', AnalogIn(self.ads_voltage, ads.P2).voltage)
        gain_current = self._gain_auto(AnalogIn(self.ads_current, ads.P0))
        gain_voltage0 = self._gain_auto(AnalogIn(self.ads_voltage, ads.P0))
        gain_voltage2 = self._gain_auto(AnalogIn(self.ads_voltage, ads.P2))
        gain_voltage = np.min([gain_voltage0, gain_voltage2])
        # print('gain current: {:.3f}, gain voltage: {:.3f}'.format(gain_current, gain_voltage))
        self.ads_current = ads.ADS1115(self.i2c, gain=gain_current, data_rate=860, address=self.ads_current_address)
        self.ads_voltage = ads.ADS1115(self.i2c, gain=gain_voltage, data_rate=860, address=self.ads_voltage_address)

        # we measure the voltage on both A0 and A2 to guess the polarity
        I = AnalogIn(self.ads_current, ads.P0).voltage * 1000. / 50 / self.r_shunt  # noqa measure current
        U0 = AnalogIn(self.ads_voltage, ads.P0).voltage * 1000.  # noqa measure voltage
        U2 = AnalogIn(self.ads_voltage, ads.P2).voltage * 1000.  # noqa
        # print('I (mV)', I*50*self.r_shunt)
        # print('I (mA)', I)
        # print('U0 (mV)', U0)
        # print('U2 (mV)', U2)

        # check polarity
        polarity = 1  # by default, we guessed it right
        vmn = U0
        if U0 < 0:  # we guessed it wrong, let's use a correction factor
            polarity = -1
            vmn = U2
        # print('polarity', polarity)

        # compute constant
        c = vmn / I

        self.exec_logger.debug(f'Rab = {Rab:.2f} Ohms')

        # implement different strategy
        if strategy == 'vmax':
            vmn_max = c * current_max
            if voltage_max > vmn_max > voltage_min:
                vab = current_max * Rab
                self.exec_logger.debug('target max current')
            else:
                iab = voltage_max / c
                vab = iab * Rab
                self.exec_logger.debug('target max voltage')
            if vab > 25000.:
                vab = 25000.
            vab = vab / 1000. * 0.9

        elif strategy == 'vmin':
            vmn_min = c * current_min
            if voltage_min < vmn_min < voltage_max:
                vab = current_min * Rab
                self.exec_logger.debug('target min current')
            else:
                iab = voltage_min / c
                vab = iab * Rab
                self.exec_logger.debug('target min voltage')
            if vab < 1000.:
                vab = 1000.
            vab = vab / 1000. * 1.1

        elif strategy == 'constant':
            vab = volt
Guillaume Blanchy's avatar
Guillaume Blanchy committed
        else:
        # self.DPS.write_register(0x09, 0) # DPS5005 off
        self.pin0.value = False
        self.pin1.value = False

        return vab, polarity
    def _find_identical_in_line(quads):
        """Finds quadrupole where A and B are identical.
        If A and B are connected to the same electrode, the Pi burns (short-circuit).
        Parameters
        ----------
            List of quadrupoles of shape nquad x 4 or 1D vector of shape nquad.
        output : numpy.ndarray 1D array of int
            List of index of rows where A and B are identical.
        """

        # if we have a 1D array (so only 1 quadrupole), make it a 2D array
        if len(quads.shape) == 1:
            quads = quads[None, :]

        output = np.where(quads[:, 0] == quads[:, 1])[0]

        return output

    def _gain_auto(self, channel):
        """Automatically sets the gain on a channel

        Parameters
        ----------
        channel : ads.ADS1x15
            Instance of ADS where voltage is measured.

        Returns
        -------
        gain : float
            Gain to be applied on ADS1115.
        """

        gain = 2 / 3
        if (abs(channel.voltage) < 2.040) and (abs(channel.voltage) >= 1.023):
            gain = 2
        elif (abs(channel.voltage) < 1.023) and (abs(channel.voltage) >= 0.508):
            gain = 4
        elif (abs(channel.voltage) < 0.508) and (abs(channel.voltage) >= 0.250):
            gain = 8
        elif abs(channel.voltage) < 0.256:
            gain = 16
        self.exec_logger.debug(f'Setting gain to {gain}')
        return gain

        """Interrupts the acquisition. """
        self.status = 'stopping'
        if self.thread is not None:
            self.thread.join()
            self.exec_logger.debug('Interrupted sequence acquisition...')
        else:
            self.exec_logger.debug('No sequence measurement thread to interrupt.')
        self.exec_logger.debug(f'Status: {self.status}')
    def load_sequence(self, filename: str, cmd_id=None):
Guillaume Blanchy's avatar
Guillaume Blanchy committed

        Parameters
        ----------
Guillaume Blanchy's avatar
Guillaume Blanchy committed
        filename : str
            Path of the .csv or .txt file with A, B, M and N electrodes.
            Electrode index start at 1.

        Returns
        -------
Guillaume Blanchy's avatar
Guillaume Blanchy committed
            Array of shape (number quadrupoles * 4).
        """
        self.exec_logger.debug(f'Loading sequence {filename}')
        sequence = np.loadtxt(filename, delimiter=" ", dtype=np.uint32)  # load quadrupole file
            self.exec_logger.debug(f'Sequence of {sequence.shape[0]:d} quadrupoles read.')
Guillaume Blanchy's avatar
Guillaume Blanchy committed
        # locate lines where the electrode index exceeds the maximum number of electrodes
        test_index_elec = np.array(np.where(sequence > self.max_elec))
Guillaume Blanchy's avatar
Guillaume Blanchy committed
        # locate lines where electrode A == electrode B
        test_same_elec = self._find_identical_in_line(sequence)
Guillaume Blanchy's avatar
Guillaume Blanchy committed
        # if statement with exit cases (TODO rajouter un else if pour le deuxième cas du ticket #2)
        if test_index_elec.size != 0:
            for i in range(len(test_index_elec[0, :])):
                self.exec_logger.error(f'An electrode index at line {str(test_index_elec[0, i] + 1)} '
                                       f'exceeds the maximum number of electrodes')
Guillaume Blanchy's avatar
Guillaume Blanchy committed
        elif len(test_same_elec) != 0:
            for i in range(len(test_same_elec)):
                self.exec_logger.error(f'An electrode index A == B detected at line {str(test_same_elec[i] + 1)}')
            self.exec_logger.info(f'Sequence {filename} of {sequence.shape[0]:d} quadrupoles loaded.')
        else:
            self.exec_logger.warning(f'Unable to load sequence {filename}')
        warnings.warn('This function is deprecated. Use run_multiple_sequences() instead.', DeprecationWarning)
        self.run_multiple_sequences(self, **kwargs)
    def _process_commands(self, message: str):
        """Processes commands received from the controller(s)
Guillaume Blanchy's avatar
Guillaume Blanchy committed

        Parameters
        ----------
        message : str
            message containing a command and arguments or keywords and arguments
        status = False
        cmd_id = '?'
        try:
            decoded_message = json.loads(message)
            self.exec_logger.debug(f'Decoded message {decoded_message}')
            cmd_id = decoded_message.pop('cmd_id', None)
            cmd = decoded_message.pop('cmd', None)
            # args = decoded_message.pop('args', None)
            # if args is not None:
            #    if len(args) != 0:
            #        if args[0] != '[':
            #            args = f'["{args}"]'
            #        self.exec_logger.debug(f'args to decode: {args}')
            #        args = json.loads(args) if args != '[]' else None
            #        self.exec_logger.debug(f'Decoded args {args}')
            #    else:
            #        args = None
            kwargs = decoded_message.pop('kwargs', None)
            # if kwargs is not None:
            #     if len(kwargs) != 0:
            #         if kwargs[0] != '{':
            #             kwargs = '{"' + kwargs + '"}'
            #         self.exec_logger.debug(f'kwargs to decode: {kwargs}')
            #         kwargs = json.loads(kwargs) if kwargs != '' else None
            #         self.exec_logger.debug(f'Decoded kwargs {kwargs}')
            #     else:
            #         kwargs = None
            self.exec_logger.debug(f"Calling method {cmd}({str(kwargs) if kwargs is not None else ''})")
            # self.exec_logger.debug(f"Calling method {cmd}({str(args) + ', ' if args is not None else ''}"
            #                        f"{str(kwargs) if kwargs is not None else ''})")
            if cmd_id is None:
                self.exec_logger.warning('You should use a unique identifier for cmd_id')
            if cmd is not None:
                try:
                    # if args is None:
                    #     if kwargs is None:
                    #         output = getattr(self, cmd)()
                    #     else:
                    #         output = getattr(self, cmd)(**kwargs)
                    # else:
                    if kwargs is None:
                        output = getattr(self, cmd)()
                        output = getattr(self, cmd)(**kwargs)
                    status = True
                except Exception as e:
                    self.exec_logger.error(
                        f"Unable to execute {cmd}({str(kwargs) if kwargs is not None else ''}): {e}")
                    status = False
        except Exception as e:
            self.exec_logger.warning(f'Unable to decode command {message}: {e}')
            status = False
        finally:
            reply = {'cmd_id': cmd_id, 'status': status}
            reply = json.dumps(reply)
            self.exec_logger.debug(f'Execution report: {reply}')
    def _read_hardware_config(self):
        """Reads hardware configuration from config.py
        self.exec_logger.debug('Getting hardware config')
        self.id = OHMPI_CONFIG['id']  # ID of the OhmPi
        self.r_shunt = OHMPI_CONFIG['R_shunt']  # reference resistance value in ohm
        self.Imax = OHMPI_CONFIG['Imax']  # maximum current
        self.exec_logger.debug(f'The maximum current cannot be higher than {self.Imax} mA')
        self.coef_p2 = OHMPI_CONFIG['coef_p2']  # slope for current conversion for ads.P2, measurement in V/V
        self.nb_samples = OHMPI_CONFIG['nb_samples']  # number of samples measured for each stack
        self.version = OHMPI_CONFIG['version']  # hardware version
        self.max_elec = OHMPI_CONFIG['max_elec']  # maximum number of electrodes
        self.board_addresses = OHMPI_CONFIG['board_addresses']
        self.board_version = OHMPI_CONFIG['board_version']
        self.exec_logger.debug(f'OHMPI_CONFIG = {str(OHMPI_CONFIG)}')
        warnings.warn('This function is deprecated. Use load_sequence instead.', DeprecationWarning)
        self.exec_logger.info('Restarting pi...')
        os.system('reboot')
    def run_measurement(self, quad=None, nb_stack=None, injection_duration=None,
                        autogain=True, strategy='constant', tx_volt=5, best_tx_injtime=0.1,
                        cmd_id=None):
        """Measures on a quadrupole and returns transfer resistance.
Guillaume Blanchy's avatar
Guillaume Blanchy committed

        Parameters
        ----------
            Quadrupole to measure, just for labelling. Only switch_mux_on/off
            really create the route to the electrodes.
Guillaume Blanchy's avatar
Guillaume Blanchy committed
        nb_stack : int, optional
            Number of stacks. A stacl is considered two half-cycles (one
            positive, one negative).
        injection_duration : int, optional
Guillaume Blanchy's avatar
Guillaume Blanchy committed
            Injection time in seconds.
        autogain : bool, optional
            If True, will adapt the gain of the ADS1115 to maximize the
            resolution of the reading.
        strategy : str, optional
            (V3.0 only) If we search for best voltage (tx_volt == 0), we can choose
            different strategy:
            - vmin: find the lowest voltage that gives us a signal
            - vmax: find the highest voltage that stays in the range
            For a constant value, just set the tx_volt.
        tx_volt : float, optional
            (V3.0 only) If specified, voltage will be imposed. If 0, we will look
            for the best voltage. If the best Tx cannot be found, no
            measurement will be taken and values will be NaN.
        best_tx_injtime : float, optional
            (V3.0 only) Injection time in seconds used for finding the best voltage.
Guillaume Blanchy's avatar
Guillaume Blanchy committed
        """
        self.exec_logger.debug('Starting measurement')
        self.exec_logger.debug('Waiting for data')
Guillaume Blanchy's avatar
Guillaume Blanchy committed
        # check arguments
        if quad is None:
            quad = [0, 0, 0, 0]
        if self.on_pi:
            if nb_stack is None:
                nb_stack = self.settings['nb_stack']
            if injection_duration is None:
                injection_duration = self.settings['injection_duration']
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
            tx_volt = float(tx_volt)

            # inner variable initialization
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
            sum_i = 0
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
            # let's define the pin again as if we run through measure()
            # as it's run in another thread, it doesn't consider these
            # and this can lead to short circuit!
            self.pin0 = self.mcp.get_pin(0)
            self.pin0.direction = Direction.OUTPUT
            self.pin0.value = False
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
            self.pin1 = self.mcp.get_pin(1)
            self.pin1.direction = Direction.OUTPUT
            self.pin1.value = False
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
            # get best voltage to inject AND polarity
            if self.idps:
                tx_volt, polarity = self._compute_tx_volt(
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
                    best_tx_injtime=best_tx_injtime, strategy=strategy, tx_volt=tx_volt)
                self.exec_logger.debug(f'Best vab found is {tx_volt:.3f}V')
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
            else:
                polarity = 1
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
            # first reset the gain to 2/3 before trying to find best gain (mode 0 is continuous)
            self.ads_current = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860,
                                           address=self.ads_current_address, mode=0)
            self.ads_voltage = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860,
                                           address=self.ads_voltage_address, mode=0)
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
            # turn on the power supply
            out_of_range = False
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
            if self.idps:
                if not np.isnan(tx_volt):
                    self.DPS.write_register(0x0000, tx_volt, 2)  # set tx voltage in V
                    self.DPS.write_register(0x09, 1)  # DPS5005 on
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
                    time.sleep(0.05)
                    self.exec_logger.debug('No best voltage found, will not take measurement')
            if not out_of_range:  # we found a Vab in the range so we measure
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
                if autogain:
                    # compute autogain
                    self.pin0.value = True
                    self.pin1.value = False
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
                    time.sleep(injection_duration)
                    gain_current = self._gain_auto(AnalogIn(self.ads_current, ads.P0))
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
                    if polarity > 0:
                        gain_voltage = self._gain_auto(AnalogIn(self.ads_voltage, ads.P0))
                        gain_voltage = self._gain_auto(AnalogIn(self.ads_voltage, ads.P2))
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
                    self.pin0.value = False
                    self.pin1.value = False
                    self.exec_logger.debug(f'Gain current: {gain_current:.3f}, gain voltage: {gain_voltage:.3f}')
                    self.ads_current = ads.ADS1115(self.i2c, gain=gain_current, data_rate=860,
                                                   address=self.ads_current_address, mode=0)
                    self.ads_voltage = ads.ADS1115(self.i2c, gain=gain_voltage, data_rate=860,
                                                   address=self.ads_voltage_address, mode=0)
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed

remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
                self.pin0.value = False
                self.pin1.value = False
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
                # one stack = 2 half-cycles (one positive, one negative)
                pinMN = 0 if polarity > 0 else 2  # noqa

                # sampling for each stack at the end of the injection
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
                sampling_interval = 10  # ms
                self.nb_samples = int(injection_duration * 1000 // sampling_interval) + 1
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
                # full data for waveform
                fulldata = []
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
                #  we sample every 10 ms (as using AnalogIn for both current
                # and voltage takes about 7 ms). When we go over the injection
                # duration, we break the loop and truncate the meas arrays
                # only the last values in meas will be taken into account
                start_time = time.time()  # start counter
                for n in range(0, nb_stack * 2):  # for each half-cycles
                    # current injection
                    if (n % 2) == 0:
                        self.pin0.value = True
                        self.pin1.value = False
                    else:
                        self.pin0.value = False
                        self.pin1.value = True  # current injection nr2
                    self.exec_logger.debug(f'Stack {n} {self.pin0.value} {self.pin1.value}')
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed

                    # measurement of current i and voltage u during injection
                    meas = np.zeros((self.nb_samples, 3)) * np.nan
                    start_delay = time.time()  # stating measurement time
                    dt = 0
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
                    for k in range(0, self.nb_samples):
                        # reading current value on ADS channels
                        meas[k, 0] = (AnalogIn(self.ads_current, ads.P0).voltage * 1000) / (50 * self.r_shunt)
                        if self.board_version == '22.11':
                            if pinMN == 0:
                                meas[k, 1] = AnalogIn(self.ads_voltage, ads.P0).voltage * 1000
                            else:
                                meas[k, 1] = -AnalogIn(self.ads_voltage, ads.P2).voltage * 1000
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
                        elif self.board_version == '22.10':
                            meas[k, 1] = -AnalogIn(self.ads_voltage, ads.P0, ads.P1).voltage * self.coef_p2 * 1000
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
                        time.sleep(sampling_interval / 1000)
                        dt = time.time() - start_delay  # real injection time (s)
                        meas[k, 2] = time.time() - start_time
                        if dt > (injection_duration - 0 * sampling_interval / 1000.):
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
                            break
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
                    # stop current injection
                    self.pin0.value = False
                    self.pin1.value = False
                    end_delay = time.time()

                    # truncate the meas array if we didn't fill the last samples
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
                    # measurement of current i and voltage u during off time
                    measpp = np.zeros((meas.shape[0], 3)) * np.nan
                    start_delay = time.time()  # stating measurement time
                    dt = 0
                    for k in range(0, measpp.shape[0]):
                        # reading current value on ADS channels
                        measpp[k, 0] = (AnalogIn(self.ads_current, ads.P0).voltage * 1000.) / (50 * self.r_shunt)
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
                        if self.board_version == '22.11':
                            if pinMN == 0:
                                measpp[k, 1] = AnalogIn(self.ads_voltage, ads.P0).voltage * 1000.
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
                            else:
                                measpp[k, 1] = AnalogIn(self.ads_voltage, ads.P2).voltage * 1000. * -1
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
                        elif self.board_version == '22.10':
                            measpp[k, 1] = -AnalogIn(self.ads_voltage, ads.P0, ads.P1).voltage * self.coef_p2 * 1000.
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
                        else:
                            self.exec_logger.debug('unknown board')
                        time.sleep(sampling_interval / 1000)
                        dt = time.time() - start_delay  # real injection time (s)
                        measpp[k, 2] = time.time() - start_time
                        if dt > (injection_duration - 0 * sampling_interval / 1000.):
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
                            break
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
                    end_delay = time.time()
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
                    # truncate the meas array if we didn't fill the last samples
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
                    # we alternate on which ADS1115 pin we measure because of sign of voltage
                    if pinMN == 0:
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
                    # store data for full wave form
                    fulldata.append(meas)
                    fulldata.append(measpp)

                # TODO get battery voltage and warn if battery is running low
                # TODO send a message on SOH stating the battery level

remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
                # let's do some calculation (out of the stacking loop)
                for n, meas in enumerate(fulldata[::2]):
                    # take average from the samples per stack, then sum them all
                    # average for the last third of the stacked values
                    #  is done outside the loop
                    sum_i = sum_i + (np.mean(meas[-int(meas.shape[0] // 3):, 0]))
                    vmn1 = np.mean(meas[-int(meas.shape[0] // 3), 1])
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
                    if (n % 2) == 0:
                        sum_vmn = sum_vmn - vmn1
                        sum_ps = sum_ps + vmn1
                    else:
                        sum_vmn = sum_vmn + vmn1
                        sum_ps = sum_ps + vmn1

            else:
                sum_i = np.nan
                sum_vmn = np.nan
                sum_ps = np.nan
            if self.idps:
                self.DPS.write_register(0x0000, 0, 2)  # reset to 0 volt
                self.DPS.write_register(0x09, 0)  # DPS5005 off
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
            # reshape full data to an array of good size
            # we need an array of regular size to save in the csv
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
                fulldata = np.vstack(fulldata)
                # we create a big enough array given nb_samples, number of
                # half-cycles (1 stack = 2 half-cycles), and twice as we
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
                # measure decay as well
                a = np.zeros((nb_stack * self.nb_samples * 2 * 2, 3)) * np.nan
                a[:fulldata.shape[0], :] = fulldata
                fulldata = a
            else:
                np.array([[]])

            # create a dictionary and compute averaged values from all stacks
            d = {
                "time": datetime.now().isoformat(),
                "A": quad[0],
                "B": quad[1],
                "M": quad[2],
                "N": quad[3],
                "inj time [ms]": (end_delay - start_delay) * 1000. if not out_of_range else 0.,
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
                "Vmn [mV]": sum_vmn / (2 * nb_stack),
                "I [mA]": sum_i / (2 * nb_stack),
                "R [ohm]": sum_vmn / sum_i,
                "Ps [mV]": sum_ps / (2 * nb_stack),
                "nbStack": nb_stack,
                "Tx [V]": tx_volt if not out_of_range else 0.,
                "CPU temp [degC]": CPUTemperature().temperature,
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
                "Nb samples [-]": self.nb_samples,
                "fulldata": fulldata,
        else:  # for testing, generate random data
            d = {'time': datetime.now().isoformat(), 'A': quad[0], 'B': quad[1], 'M': quad[2], 'N': quad[3],
                 'R [ohm]': np.abs(np.random.randn(1)).tolist()}
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
        # to the data logger
        dd = d.copy()
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
        dd.pop('fulldata')  # too much for logger
        dd.update({'A': str(dd['A'])})
        dd.update({'B': str(dd['B'])})
        dd.update({'M': str(dd['M'])})
        dd.update({'N': str(dd['N'])})

        # round float to 2 decimal
        for key in dd.keys():
            if isinstance(dd[key], float):
                dd[key] = np.round(dd[key], 3)

        dd['cmd_id'] = str(cmd_id)
        self.data_logger.info(dd)
    def run_multiple_sequences(self, cmd_id=None, sequence_delay=None, nb_meas=None, **kwargs):
        """Runs multiple sequences in a separate thread for monitoring mode.
           Can be stopped by 'OhmPi.interrupt()'.
           Additional arguments are passed to run_measurement().

        Parameters
        ----------
        cmd_id :

        sequence_delay : int, optional
            Number of seconds at which the sequence must be started from each others.
        nb_meas : int, optional
            Number of time the sequence must be repeated.
        kwargs : dict, optional
            See help(k.run_measurement) for more info.
        """
        # self.run = True
        if sequence_delay is None:
            sequence_delay = self.settings['sequence_delay']
        sequence_delay = int(sequence_delay)
        if nb_meas is None:
            nb_meas = self.settings['nb_meas']
        self.status = 'running'
        self.exec_logger.debug(f'Status: {self.status}')
        self.exec_logger.debug(f'Measuring sequence: {self.sequence}')

        def func():
            for g in range(0, nb_meas):  # for time-lapse monitoring
                if self.status == 'stopping':
                    self.exec_logger.warning('Data acquisition interrupted')
                    break
                t0 = time.time()
                self.run_sequence(**kwargs)

                # sleeping time between sequence
                dt = sequence_delay - (time.time() - t0)
                if dt < 0:
                    dt = 0
                if nb_meas > 1:
                    time.sleep(dt)  # waiting for next measurement (time-lapse)
            self.status = 'idle'

        self.thread = threading.Thread(target=func)
        self.thread.start()

    def run_sequence(self, cmd_id=None, **kwargs):
        """Runs sequence synchronously (=blocking on main thread).
           Additional arguments are passed to run_measurement().
        """
        self.status = 'running'
        self.exec_logger.debug(f'Status: {self.status}')
        self.exec_logger.debug(f'Measuring sequence: {self.sequence}')
        t0 = time.time()

        # create filename with timestamp
        filename = self.settings["export_path"].replace('.csv',
                                                        f'_{datetime.now().strftime("%Y%m%dT%H%M%S")}.csv')
        self.exec_logger.debug(f'Saving to {filename}')

        # make sure all multiplexer are off
        self.reset_mux()

        # measure all quadrupole of the sequence
        if self.sequence is None:
            n = 1
        else:
            n = self.sequence.shape[0]
        for i in range(0, n):
            if self.sequence is None:
                quad = np.array([0, 0, 0, 0])
            else:
                quad = self.sequence[i, :]  # quadrupole
            if self.status == 'stopping':
                break

            # call the switch_mux function to switch to the right electrodes
            self.switch_mux_on(quad)

            # run a measurement
            if self.on_pi:
                acquired_data = self.run_measurement(quad, **kwargs)
            else:  # for testing, generate random data
                acquired_data = {
                    'A': [quad[0]], 'B': [quad[1]], 'M': [quad[2]], 'N': [quad[3]],
                    'R [ohm]': np.abs(np.random.randn(1))
                }

            # switch mux off
            self.switch_mux_off(quad)

            # add command_id in dataset
            acquired_data.update({'cmd_id': cmd_id})
            # log data to the data logger
            # self.data_logger.info(f'{acquired_data}')
            # save data and print in a text file
            self.append_and_save(filename, acquired_data)
            self.exec_logger.debug(f'quadrupole {i + 1:d}/{n:d}')

        self.status = 'idle'

    def run_sequence_async(self, cmd_id=None, **kwargs):
        """Runs the sequence in a separate thread. Can be stopped by 'OhmPi.interrupt()'.
            Additional arguments are passed to run_measurement().

            Parameters
            ----------
            cmd_id:
        """

        def func():
            self.run_sequence(**kwargs)

        self.thread = threading.Thread(target=func)
        self.thread.start()
        self.status = 'idle'

    def rs_check(self, tx_volt=12, cmd_id=None):
Guillaume Blanchy's avatar
Guillaume Blanchy committed
        # create custom sequence where MN == AB
Guillaume Blanchy's avatar
Guillaume Blanchy committed
        # we only check the electrodes which are in the sequence (not all might be connected)
Olivier Kaufmann's avatar
Olivier Kaufmann committed
        if self.sequence is None or not self.use_mux:
            quads = np.array([[1, 2, 1, 2]], dtype=np.uint32)
        else:
            elec = np.sort(np.unique(self.sequence.flatten()))  # assumed order
            quads = np.vstack([