ohmpi.py 67 KB
Newer Older
# -*- coding: utf-8 -*-
Clement Remi's avatar
Clement Remi committed
"""
created on January 6, 2020.
Clement Remi's avatar
Clement Remi committed
Updates dec 2022.
Hardware: Licensed under CERN-OHL-S v2 or any later version
Software: Licensed under the GNU General Public License v3.0
Ohmpi.py is a program to control a low-cost and open hardware resistivity meter OhmPi that has been developed by
Rémi CLEMENT (INRAE), Vivien DUBOIS (INRAE), Hélène GUYARD (IGE), Nicolas FORQUET (INRAE), Yannick FARGIER (IFSTTAR)
Olivier Kaufmann's avatar
Olivier Kaufmann committed
Olivier KAUFMANN (UMONS), Arnaud WATLET (UMONS) and Guillaume BLANCHY (FNRS/ULiege).
Clement Remi's avatar
Clement Remi committed
"""

import json
import warnings
from copy import deepcopy
import numpy as np
import time
Guillaume Blanchy's avatar
Guillaume Blanchy committed
import shutil
from datetime import datetime
from termcolor import colored
from logging_setup import setup_loggers
from config import MQTT_CONTROL_CONFIG, OHMPI_CONFIG, EXEC_LOGGING_CONFIG
from logging import DEBUG
# finish import (done only when class is instantiated as some libs are only available on arm64 platform)
    import board  # noqa
    import busio  # noqa
    import adafruit_tca9548a  # noqa
    import adafruit_ads1x15.ads1115 as ads  # noqa
    from adafruit_ads1x15.analog_in import AnalogIn  # noqa
    from adafruit_mcp230xx.mcp23008 import MCP23008  # noqa
    from adafruit_mcp230xx.mcp23017 import MCP23017  # noqa
    import digitalio  # noqa
    from digitalio import Direction  # noqa
    from gpiozero import CPUTemperature  # noqa
Guillaume Blanchy's avatar
Guillaume Blanchy committed
    import minimalmodbus  # noqa

except ImportError as error:
    if EXEC_LOGGING_CONFIG['logging_level'] == DEBUG:
        print(colored(f'Import error: {error}', 'yellow'))
except Exception as error:
    print(colored(f'Unexpected error: {error}', 'red'))
Guillaume Blanchy's avatar
Guillaume Blanchy committed
class OhmPi(object):
    def __init__(self, settings=None, sequence=None, use_mux=False, mqtt=True, onpi=None, idps=False):
        Parameters
        ----------
        settings:

        sequence:

        use_mux:
            if True use the multiplexor to select active electrodes
        mqtt: bool, defaut: True
            if True publish on mqtt topics while logging, otherwise use other loggers only
            if None, the platform on which the class is instantiated is determined to set on_pi to either True or False.
            if False the behaviour of an ohmpi will be partially emulated and return random data.
        self._sequence = sequence
Olivier Kaufmann's avatar
Olivier Kaufmann committed
        self.use_mux = use_mux
        self.on_pi = onpi  # True if run from the RaspberryPi with the hardware, otherwise False for random data
Guillaume Blanchy's avatar
Guillaume Blanchy committed
        self.status = 'idle'  # either running or idle
        self.thread = None  # contains the handle for the thread taking the measurement
        config_exec_logger, _, config_data_logger, _, _, msg = setup_loggers(mqtt=mqtt)  # TODO: add SOH
        self.data_logger = config_data_logger
        self.exec_logger = config_exec_logger
        self.soh_logger = None  # TODO: Implement the SOH logger
        print(msg)
        # read in hardware parameters (config.py)
        self._read_hardware_config()
        # default acquisition settings
        self.settings = {
            'injection_duration': 0.2,
            'sequence_delay': 1,
            'nb_stack': 1,
            'export_path': 'data/measurement.csv'
Guillaume Blanchy's avatar
Guillaume Blanchy committed
        }
        # read in acquisition settings
        if settings is not None:
            self.update_settings(settings)
        self.exec_logger.debug('Initialized with settings:' + str(self.settings))
Guillaume Blanchy's avatar
Guillaume Blanchy committed
        # read quadrupole sequence
Olivier Kaufmann's avatar
Olivier Kaufmann committed
            self.load_sequence(sequence)
        self.idps = idps  # flag to use dps for injection or not
Guillaume Blanchy's avatar
Guillaume Blanchy committed
        # connect to components on the OhmPi board
Guillaume Blanchy's avatar
Guillaume Blanchy committed
            # activation of I2C protocol
            self.i2c = busio.I2C(board.SCL, board.SDA)  # noqa
Guillaume Blanchy's avatar
Guillaume Blanchy committed

            # I2C connexion to MCP23008, for current injection
            self.MCPIHM = MCP23008(self.i2c, address=0x24)
            self.pin4 = self.MCPIHM.get_pin(4) # Ohmpi_run
Clement Remi's avatar
Clement Remi committed
            self.pin4.direction = Direction.OUTPUT
            self.pin4.value = True
Guillaume Blanchy's avatar
Guillaume Blanchy committed

            # ADS1115 for current measurement (AB)
            self.ads_current_address = 0x48
            self.ads_current = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=self.ads_current_address)
Guillaume Blanchy's avatar
Guillaume Blanchy committed

            # ADS1115 for voltage measurement (MN)
            self.ads_voltage_address = 0x49
            self.ads_voltage = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=self.ads_voltage_address)
                self.pin2 = self.MCPIHM.get_pin(2) # dsp +
Clement Remi's avatar
Clement Remi committed
                self.pin2.direction = Direction.OUTPUT
                self.pin2.value = True
                self.pin3 = self.MCPIHM.get_pin(3) # dsp -
Clement Remi's avatar
Clement Remi committed
                self.pin3.direction = Direction.OUTPUT
                self.pin3.value = True
                self.DPS = minimalmodbus.Instrument(port='/dev/ttyUSB0', slaveaddress=1)  # port name, address (decimal)
Guillaume Blanchy's avatar
Guillaume Blanchy committed
                self.DPS.serial.baudrate = 9600  # Baud rate 9600 as listed in doc
                self.DPS.serial.bytesize = 8  #
                self.DPS.serial.timeout = 1  # greater than 0.5 for it to work
                self.DPS.debug = False  #
                self.DPS.serial.parity = 'N'  # No parity
                self.DPS.mode = minimalmodbus.MODE_RTU  # RTU mode
                self.DPS.write_register(0x0001, 1000, 0)  # max current allowed (100 mA for relays)
Clement Remi's avatar
Clement Remi committed
                print(self.DPS.read_register(0x05,2 ))  # max current allowed (100 mA for relays) #voltage
                
                self.pin2.value = False
                self.pin3.value = False
            # injection courant and measure (TODO check if it works, otherwise back in run_measurement())
            self.pin0 = self.MCPIHM.get_pin(0)
            self.pin0.direction = Direction.OUTPUT
            self.pin0.value = False
            self.pin1 = self.MCPIHM.get_pin(1)
            self.pin1.direction = Direction.OUTPUT
            self.pin1.value = False

        # set controller
        self.mqtt = mqtt
        self.cmd_id = None
        if self.mqtt:
            import paho.mqtt.client as mqtt_client

            self.exec_logger.debug(f"Connecting to control topic {MQTT_CONTROL_CONFIG['ctrl_topic']}"
                                   f" on {MQTT_CONTROL_CONFIG['hostname']} broker")

            def connect_mqtt() -> mqtt_client:
Guillaume Blanchy's avatar
Guillaume Blanchy committed
                def on_connect(mqttclient, userdata, flags, rc):
                        self.exec_logger.debug(f"Successfully connected to control broker:"
                                               f" {MQTT_CONTROL_CONFIG['hostname']}")
                        self.exec_logger.warning(f'Failed to connect to control broker. Return code : {rc}')
                client = mqtt_client.Client(f"ohmpi_{OHMPI_CONFIG['id']}_listener", clean_session=False)
                client.username_pw_set(MQTT_CONTROL_CONFIG['auth'].get('username'),
                                       MQTT_CONTROL_CONFIG['auth']['password'])
                client.on_connect = on_connect
                client.connect(MQTT_CONTROL_CONFIG['hostname'], MQTT_CONTROL_CONFIG['port'])
            try:
                self.exec_logger.debug(f"Connecting to control broker: {MQTT_CONTROL_CONFIG['hostname']}")
                self.controller = connect_mqtt()
            except Exception as e:
                self.exec_logger.debug(f'Unable to connect control broker: {e}')
                self.controller = None
            if self.controller is not None:
                self.exec_logger.debug(f"Subscribing to control topic {MQTT_CONTROL_CONFIG['ctrl_topic']}")
                try:
                    self.controller.subscribe(MQTT_CONTROL_CONFIG['ctrl_topic'], MQTT_CONTROL_CONFIG['qos'])

                    msg = f"Subscribed to control topic {MQTT_CONTROL_CONFIG['ctrl_topic']}" \
                          f" on {MQTT_CONTROL_CONFIG['hostname']} broker"
                    self.exec_logger.debug(msg)
                    print(colored(f'\u2611 {msg}', 'blue'))
                except Exception as e:
                    self.exec_logger.warning(f'Unable to subscribe to control topic : {e}')
                    self.controller = None
                publisher_config = MQTT_CONTROL_CONFIG.copy()
                publisher_config['topic'] = MQTT_CONTROL_CONFIG['ctrl_topic']
                publisher_config.pop('ctrl_topic')

                def on_message(client, userdata, message):
                    command = message.payload.decode('utf-8')
                    self.exec_logger.debug(f'Received command {command}')
                    self._process_commands(command)

                self.controller.on_message = on_message
            else:
                self.controller = None
                self.exec_logger.warning('No connection to control broker.'
                                         ' Use python/ipython to interact with OhmPi object...')
    def append_and_save(filename: str, last_measurement: dict, cmd_id=None):
        """Appends and saves the last measurement dict.
        Parameters
        ----------
        filename : str
            filename to save the last measurement dataframe
        last_measurement : dict
            Last measurement taken in the form of a python dictionary
        cmd_id : str, optional
            Unique command identifier
        """
        last_measurement = deepcopy(last_measurement)
        if 'fulldata' in last_measurement:
            d = last_measurement['fulldata']
            n = d.shape[0]
            if n > 1:
                idic = dict(zip(['i' + str(i) for i in range(n)], d[:, 0]))
                udic = dict(zip(['u' + str(i) for i in range(n)], d[:, 1]))
                tdic = dict(zip(['t' + str(i) for i in range(n)], d[:, 2]))
                last_measurement.update(idic)
                last_measurement.update(udic)
                last_measurement.update(tdic)
            last_measurement.pop('fulldata')
        if os.path.isfile(filename):
            # Load data file and append data to it
            with open(filename, 'a') as f:
                w = csv.DictWriter(f, last_measurement.keys())
                w.writerow(last_measurement)
                # last_measurement.to_csv(f, header=False)
        else:
            # create data file and add headers
            with open(filename, 'a') as f:
                w = csv.DictWriter(f, last_measurement.keys())
                w.writeheader()
                w.writerow(last_measurement)
    def _compute_tx_volt(self, best_tx_injtime=0.1, strategy='vmax', tx_volt=5):
        """Estimates best Tx voltage based on different strategies.
        At first a half-cycle is made for a short duration with a fixed
        known voltage. This gives us Iab and Rab. We also measure Vmn.
        A constant c = vmn/iab is computed (only depends on geometric
        factor and ground resistivity, that doesn't change during a
        quadrupole). Then depending on the strategy, we compute which
        vab to inject to reach the minimum/maximum Iab current or
        min/max Vmn.
        This function also compute the polarity on Vmn (on which pin
        of the ADS1115 we need to measure Vmn to get the positive value).
Guillaume Blanchy's avatar
Guillaume Blanchy committed

        Parameters
        ----------
        best_tx_injtime : float, optional
            Time in milliseconds for the half-cycle used to compute Rab.
        strategy : str, optional
            Either:
            - vmax : compute Vab to reach a maximum Iab and Vmn
            - constant : apply given Vab
        tx_volt : float, optional
            Voltage apply to try to guess the best voltage. 5 V applied
            by default. If strategy "constant" is chosen, constant voltage
            to applied is "tx_volt".

        Returns
        -------
        vab : float
            Proposed Vab according to the given strategy.
        polarity : int
            Either 1 or -1 to know on which pin of the ADS the Vmn is measured.
Guillaume Blanchy's avatar
Guillaume Blanchy committed
        """

        # hardware limits
        voltage_min = 10.  # mV
        voltage_max = 4500.
        current_min = voltage_min / (self.r_shunt * 50)  # mA
        current_max = voltage_max / (self.r_shunt * 50)
        tx_max = 50.  # volt
            self.exec_logger.warning('Sorry, cannot inject more than 50 V, set it back to 5 V')
            volt = 5.

        # redefined the pin of the mcp (needed when relays are connected)
        self.pin0 = self.MCPIHM.get_pin(0)
        self.pin0.direction = Direction.OUTPUT
        self.pin0.value = False
        self.pin1 = self.MCPIHM.get_pin(1)
        self.pin1.direction = Direction.OUTPUT
        self.pin1.value = False

        # select a polarity to start with
        self.pin0.value = True
        self.pin1.value = False
Clement Remi's avatar
Clement Remi committed
        if strategy == 'vmax':
Arnaud WATLET's avatar
Arnaud WATLET committed
            I=0
            vmn=0
            count=0
Arnaud WATLET's avatar
Arnaud WATLET committed
            while I < 3 or abs(vmn) < 20 :  # I supérieur à 1 mA et Vmn surpérieur
                if count >0 :
                    volt = volt + 2
                count=count+1
                if volt > 50:
                    break
                # set voltage for test
                self.DPS.write_register(0x0000, volt, 2)
                self.DPS.write_register(0x09, 1)  # DPS5005 on
                time.sleep(best_tx_injtime)  # inject for given tx time

                # autogain
                self.ads_current = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=self.ads_current_address)
                self.ads_voltage = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=self.ads_voltage_address)
                gain_current = self._gain_auto(AnalogIn(self.ads_current, ads.P0))
                gain_voltage0 = self._gain_auto(AnalogIn(self.ads_voltage, ads.P0))
                gain_voltage2 = self._gain_auto(AnalogIn(self.ads_voltage, ads.P2))
                gain_voltage = np.min([gain_voltage0, gain_voltage2])
                self.ads_current = ads.ADS1115(self.i2c, gain=gain_current, data_rate=860, address=self.ads_current_address)
                self.ads_voltage = ads.ADS1115(self.i2c, gain=gain_voltage, data_rate=860, address=self.ads_voltage_address)
                # we measure the voltage on both A0 and A2 to guess the polarity
                I = AnalogIn(self.ads_current, ads.P0).voltage * 1000. / 50 / self.r_shunt  # noqa measure current
                U0 = AnalogIn(self.ads_voltage, ads.P0).voltage * 1000.  # noqa measure voltage
                U2 = AnalogIn(self.ads_voltage, ads.P2).voltage * 1000.  # noqa

                # check polarity
                polarity = 1  # by default, we guessed it right
                vmn = U0
                if U0 < 0:  # we guessed it wrong, let's use a correction factor
                    polarity = -1
                    vmn = U2
                if strategy == 'vmax':
                    if abs(vmn)>4500 or I> 45 :
                         volt = volt - 2
                         self.DPS.write_register(0x0000, volt, 2)
                         self.DPS.write_register(0x09, 1)  # DPS5005 on
                         time.sleep(best_tx_injtime)
                         I = AnalogIn(self.ads_current, ads.P0).voltage * 1000. / 50 / self.r_shunt
                         U0 = AnalogIn(self.ads_voltage, ads.P0).voltage * 1000.
                         U2 = AnalogIn(self.ads_voltage, ads.P2).voltage * 1000.

                         polarity = 1  # by default, we guessed it right
                         vmn = U0
                         if U0 < 0:  # we guessed it wrong, let's use a correction factor
                            polarity = -1
                            vmn = U2
                         break

Clement Remi's avatar
Clement Remi committed
            factor_I = (current_max) / I
            factor_vmn = voltage_max / vmn
            factor = factor_I
            if factor_I > factor_vmn:
                factor = factor_vmn
            vab = factor * volt * 0.8
Clement Remi's avatar
Clement Remi committed
            if vab > tx_max:
                vab = tx_max
Guillaume Blanchy's avatar
Guillaume Blanchy committed
        else:
Arnaud WATLET's avatar
Arnaud WATLET committed
            if strategy == 'constant':
                vab = volt
            else:
                vab = 5

            # autogain
            self.ads_current = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=self.ads_current_address)
            self.ads_voltage = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=self.ads_voltage_address)
            gain_current = self._gain_auto(AnalogIn(self.ads_current, ads.P0))
            gain_voltage0 = self._gain_auto(AnalogIn(self.ads_voltage, ads.P0))
            gain_voltage2 = self._gain_auto(AnalogIn(self.ads_voltage, ads.P2))
            gain_voltage = np.min([gain_voltage0, gain_voltage2])
            self.ads_current = ads.ADS1115(self.i2c, gain=gain_current, data_rate=860, address=self.ads_current_address)
            self.ads_voltage = ads.ADS1115(self.i2c, gain=gain_voltage, data_rate=860, address=self.ads_voltage_address)
            # we measure the voltage on both A0 and A2 to guess the polarity
            I = AnalogIn(self.ads_current, ads.P0).voltage * 1000. / 50 / self.r_shunt  # noqa measure current
            U0 = AnalogIn(self.ads_voltage, ads.P0).voltage * 1000.  # noqa measure voltage
            U2 = AnalogIn(self.ads_voltage, ads.P2).voltage * 1000.  # noqa

            # check polarity
            polarity = 1  # by default, we guessed it right
            vmn = U0
            if U0 < 0:  # we guessed it wrong, let's use a correction factor
                polarity = -1
                vmn = U2
Arnaud WATLET's avatar
Arnaud WATLET committed
        self.DPS.write_register(0x09, 0) # DPS5005 off
        # print('polarity', polarity)
        self.pin0.value = False
        self.pin1.value = False
        # compute constant
        c = vmn / I
        Rab = (volt * 1000.) / I  # noqa

        self.exec_logger.debug(f'Rab = {Rab:.2f} Ohms')

        # self.DPS.write_register(0x09, 0) # DPS5005 off
        self.pin0.value = False
        self.pin1.value = False

        return vab, polarity
    def _find_identical_in_line(quads):
        """Finds quadrupole where A and B are identical.
        If A and B are connected to the same electrode, the Pi burns (short-circuit).
        Parameters
        ----------
            List of quadrupoles of shape nquad x 4 or 1D vector of shape nquad.
        output : numpy.ndarray 1D array of int
            List of index of rows where A and B are identical.
        """

        # if we have a 1D array (so only 1 quadrupole), make it a 2D array
        if len(quads.shape) == 1:
            quads = quads[None, :]

        output = np.where(quads[:, 0] == quads[:, 1])[0]

        return output

    def _gain_auto(self, channel):
        """Automatically sets the gain on a channel

        Parameters
        ----------
        channel : ads.ADS1x15
            Instance of ADS where voltage is measured.

        Returns
        -------
        gain : float
            Gain to be applied on ADS1115.
        """

        gain = 2 / 3
        if (abs(channel.voltage) < 2.040) and (abs(channel.voltage) >= 1.023):
            gain = 2
        elif (abs(channel.voltage) < 1.023) and (abs(channel.voltage) >= 0.508):
            gain = 4
        elif (abs(channel.voltage) < 0.508) and (abs(channel.voltage) >= 0.250):
            gain = 8
        elif abs(channel.voltage) < 0.256:
            gain = 16
        self.exec_logger.debug(f'Setting gain to {gain}')
        return gain

    def get_data(self, survey_names=None, cmd_id=None):
Guillaume Blanchy's avatar
Guillaume Blanchy committed
        """Get available data.
        
        Parameters
        ----------
        survey_names : list of str, optional
            List of filenames already available from the html interface. So
            their content won't be returned again. Only files not in the list
            will be read.
        cmd_id : str, optional
            Unique command identifier
Guillaume Blanchy's avatar
Guillaume Blanchy committed
        """
        # get all .csv file in data folder
        if survey_names is None:
            survey_names = []
Guillaume Blanchy's avatar
Guillaume Blanchy committed
        fnames = [fname for fname in os.listdir('data/') if fname[-4:] == '.csv']
        ddic = {}
        if cmd_id is None:
            cmd_id = 'unknown'
        for fname in fnames:
            if ((fname != 'readme.txt')
                    and ('_rs' not in fname)
                    and (fname.replace('.csv', '') not in survey_names)):
Guillaume Blanchy's avatar
Guillaume Blanchy committed
                try:
                    data = np.loadtxt('data/' + fname, delimiter=',',
                                      skiprows=1, usecols=(1, 2, 3, 4, 8))
Guillaume Blanchy's avatar
Guillaume Blanchy committed
                    data = data[None, :] if len(data.shape) == 1 else data
                    ddic[fname.replace('.csv', '')] = {
                        'a': data[:, 0].astype(int).tolist(),
                        'b': data[:, 1].astype(int).tolist(),
                        'm': data[:, 2].astype(int).tolist(),
                        'n': data[:, 3].astype(int).tolist(),
                        'rho': data[:, 4].tolist(),
                    }
                except Exception as e:
                    print(fname, ':', e)
        rdic = {'cmd_id': cmd_id, 'data': ddic}
        self.data_logger.info(json.dumps(rdic))
        return ddic

        """Interrupts the acquisition

        Parameters
        ----------
        cmd_id : str, optional
            Unique command identifier
        """
        self.status = 'stopping'
        if self.thread is not None:
            self.thread.join()
            self.exec_logger.debug('Interrupted sequence acquisition...')
        else:
            self.exec_logger.debug('No sequence measurement thread to interrupt.')
        self.exec_logger.debug(f'Status: {self.status}')
    def load_sequence(self, filename: str, cmd_id=None):
Guillaume Blanchy's avatar
Guillaume Blanchy committed

        Parameters
        ----------
        filename : str
            Path of the .csv or .txt file with A, B, M and N electrodes.
            Electrode index start at 1.
        cmd_id : str, optional
            Unique command identifier
Guillaume Blanchy's avatar
Guillaume Blanchy committed

        Returns
        -------
Guillaume Blanchy's avatar
Guillaume Blanchy committed
            Array of shape (number quadrupoles * 4).
        """
        self.exec_logger.debug(f'Loading sequence {filename}')
        sequence = np.loadtxt(filename, delimiter=" ", dtype=np.uint32)  # load quadrupole file
            self.exec_logger.debug(f'Sequence of {sequence.shape[0]:d} quadrupoles read.')
Guillaume Blanchy's avatar
Guillaume Blanchy committed
        # locate lines where the electrode index exceeds the maximum number of electrodes
        test_index_elec = np.array(np.where(sequence > self.max_elec))
Guillaume Blanchy's avatar
Guillaume Blanchy committed
        # locate lines where electrode A == electrode B
        test_same_elec = self._find_identical_in_line(sequence)
Guillaume Blanchy's avatar
Guillaume Blanchy committed
        # if statement with exit cases (TODO rajouter un else if pour le deuxième cas du ticket #2)
        if test_index_elec.size != 0:
            for i in range(len(test_index_elec[0, :])):
                self.exec_logger.error(f'An electrode index at line {str(test_index_elec[0, i] + 1)} '
                                       f'exceeds the maximum number of electrodes')
Guillaume Blanchy's avatar
Guillaume Blanchy committed
        elif len(test_same_elec) != 0:
            for i in range(len(test_same_elec)):
                self.exec_logger.error(f'An electrode index A == B detected at line {str(test_same_elec[i] + 1)}')
            self.exec_logger.info(f'Sequence {filename} of {sequence.shape[0]:d} quadrupoles loaded.')
        else:
            self.exec_logger.warning(f'Unable to load sequence {filename}')
        warnings.warn('This function is deprecated. Use run_multiple_sequences() instead.', DeprecationWarning)
Guillaume Blanchy's avatar
Guillaume Blanchy committed
        self.run_multiple_sequences(**kwargs)
    def _process_commands(self, message: str):
        """Processes commands received from the controller(s)
Guillaume Blanchy's avatar
Guillaume Blanchy committed

        Parameters
        ----------
        message : str
            message containing a command and arguments or keywords and arguments
Guillaume Blanchy's avatar
Guillaume Blanchy committed
        """
        status = False
        cmd_id = '?'
        try:
            decoded_message = json.loads(message)
            self.exec_logger.debug(f'Decoded message {decoded_message}')
            cmd_id = decoded_message.pop('cmd_id', None)
            cmd = decoded_message.pop('cmd', None)
Guillaume Blanchy's avatar
Guillaume Blanchy committed
            # args = decoded_message.pop('args', None)
            # if args is not None:
            #    if len(args) != 0:
            #        if args[0] != '[':
            #            args = f'["{args}"]'
            #        self.exec_logger.debug(f'args to decode: {args}')
            #        args = json.loads(args) if args != '[]' else None
            #        self.exec_logger.debug(f'Decoded args {args}')
            #    else:
            #        args = None
            kwargs = decoded_message.pop('kwargs', None)
Guillaume Blanchy's avatar
Guillaume Blanchy committed
            # if kwargs is not None:
            #     if len(kwargs) != 0:
            #         if kwargs[0] != '{':
            #             kwargs = '{"' + kwargs + '"}'
            #         self.exec_logger.debug(f'kwargs to decode: {kwargs}')
            #         kwargs = json.loads(kwargs) if kwargs != '' else None
            #         self.exec_logger.debug(f'Decoded kwargs {kwargs}')
            #     else:
            #         kwargs = None
            self.exec_logger.debug(f"Calling method {cmd}({str(kwargs) if kwargs is not None else ''})")
            # self.exec_logger.debug(f"Calling method {cmd}({str(args) + ', ' if args is not None else ''}"
            #                        f"{str(kwargs) if kwargs is not None else ''})")
            if cmd_id is None:
                self.exec_logger.warning('You should use a unique identifier for cmd_id')
            if cmd is not None:
                try:
                    # if args is None:
                    #     if kwargs is None:
                    #         output = getattr(self, cmd)()
                    #     else:
                    #         output = getattr(self, cmd)(**kwargs)
                    # else:
                    if kwargs is None:
                        output = getattr(self, cmd)()
                        output = getattr(self, cmd)(**kwargs)
                    status = True
                except Exception as e:
                    self.exec_logger.error(
                        f"Unable to execute {cmd}({str(kwargs) if kwargs is not None else ''}): {e}")
                    status = False
        except Exception as e:
            self.exec_logger.warning(f'Unable to decode command {message}: {e}')
            status = False
        finally:
            reply = {'cmd_id': cmd_id, 'status': status}
            reply = json.dumps(reply)
            self.exec_logger.debug(f'Execution report: {reply}')
        """Quits OhmPi
        Parameters
        ----------
        cmd_id : str, optional
            Unique command identifier
        """

        self.exec_logger.debug(f'Quitting ohmpi.py following command {cmd_id}')
    def _read_hardware_config(self):
        """Reads hardware configuration from config.py
        self.exec_logger.debug('Getting hardware config')
        self.id = OHMPI_CONFIG['id']  # ID of the OhmPi
        self.r_shunt = OHMPI_CONFIG['R_shunt']  # reference resistance value in ohm
        self.Imax = OHMPI_CONFIG['Imax']  # maximum current
        self.exec_logger.debug(f'The maximum current cannot be higher than {self.Imax} mA')
        self.coef_p2 = OHMPI_CONFIG['coef_p2']  # slope for current conversion for ads.P2, measurement in V/V
        self.nb_samples = OHMPI_CONFIG['nb_samples']  # number of samples measured for each stack
        self.version = OHMPI_CONFIG['version']  # hardware version
        self.max_elec = OHMPI_CONFIG['max_elec']  # maximum number of electrodes
        self.board_addresses = OHMPI_CONFIG['board_addresses']
Clement Remi's avatar
Clement Remi committed
        self.board_version = OHMPI_CONFIG['board_version']
        self.exec_logger.debug(f'OHMPI_CONFIG = {str(OHMPI_CONFIG)}')
        warnings.warn('This function is deprecated. Use load_sequence instead.', DeprecationWarning)
    def remove_data(self, cmd_id=None):
        """Remove all data in the data folder

        Parameters
        ----------
        cmd_id : str, optional
            Unique command identifier
        self.exec_logger.debug(f'Removing all data following command {cmd_id}')
Guillaume Blanchy's avatar
Guillaume Blanchy committed
        shutil.rmtree('data')
        os.mkdir('data')

        """Restarts the Raspberry Pi

        Parameters
        ----------
        cmd_id : str, optional
            Unique command identifier
        """

        if self.on_pi:
            self.exec_logger.info(f'Restarting pi following command {cmd_id}...')
            os.system('reboot')
        else:
            self.exec_logger.warning('Not on Raspberry Pi, skipping reboot...')
    def run_measurement(self, quad=None, nb_stack=None, injection_duration=None,
                        autogain=True, strategy='constant', tx_volt=5, best_tx_injtime=0.1,
                        cmd_id=None):
        """Measures on a quadrupole and returns transfer resistance.
Guillaume Blanchy's avatar
Guillaume Blanchy committed

        Parameters
        ----------
            Quadrupole to measure, just for labelling. Only switch_mux_on/off
            really create the route to the electrodes.
Guillaume Blanchy's avatar
Guillaume Blanchy committed
        nb_stack : int, optional
            Number of stacks. A stacl is considered two half-cycles (one
            positive, one negative).
        injection_duration : int, optional
Guillaume Blanchy's avatar
Guillaume Blanchy committed
            Injection time in seconds.
        autogain : bool, optional
            If True, will adapt the gain of the ADS1115 to maximize the
            resolution of the reading.
        strategy : str, optional
            (V3.0 only) If we search for best voltage (tx_volt == 0), we can choose
Clement Remi's avatar
Clement Remi committed
            vmax strategy : find the highest voltage that stays in the range
            For a constant value, just set the tx_volt.
        tx_volt : float, optional
            (V3.0 only) If specified, voltage will be imposed. If 0, we will look
            for the best voltage. If the best Tx cannot be found, no
            measurement will be taken and values will be NaN.
        best_tx_injtime : float, optional
            (V3.0 only) Injection time in seconds used for finding the best voltage.
        cmd_id : str, optional
            Unique command identifier
Guillaume Blanchy's avatar
Guillaume Blanchy committed
        """
        self.exec_logger.debug('Starting measurement')
        self.exec_logger.debug('Waiting for data')
Guillaume Blanchy's avatar
Guillaume Blanchy committed
        # check arguments
        if quad is None:
            quad = [0, 0, 0, 0]
        if self.on_pi:
            if nb_stack is None:
                nb_stack = self.settings['nb_stack']
            if injection_duration is None:
                injection_duration = self.settings['injection_duration']
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
            tx_volt = float(tx_volt)

            # inner variable initialization
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
            sum_i = 0
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
            # let's define the pin again as if we run through measure()
            # as it's run in another thread, it doesn't consider these
            # and this can lead to short circuit!
            
            self.pin0 = self.MCPIHM.get_pin(0)
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
            self.pin0.direction = Direction.OUTPUT
            self.pin0.value = False
            self.pin1 = self.MCPIHM.get_pin(1)
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
            self.pin1.direction = Direction.OUTPUT
            self.pin1.value = False
            self.pin7 = self.MCPIHM.get_pin(7) #IHM on mesaurement
Clement Remi's avatar
Clement Remi committed
            self.pin7.direction = Direction.OUTPUT
            self.pin7.value = False
            
rpi2.0's avatar
rpi2.0 committed
            if self.sequence is None :
                    self.pin2 = self.MCPIHM.get_pin(2) # dsp +
                    self.pin2.direction = Direction.OUTPUT
                    self.pin2.value = True
                    self.pin3 = self.MCPIHM.get_pin(3) # dsp -
                    self.pin3.direction = Direction.OUTPUT
                    self.pin3.value = True
                    time.sleep(5)
                    
            self.pin5 = self.MCPIHM.get_pin(5) #IHM on mesaurement
Clement Remi's avatar
Clement Remi committed
            self.pin5.direction = Direction.OUTPUT
            self.pin5.value = True
            self.pin6 = self.MCPIHM.get_pin(6) #IHM on mesaurement
Clement Remi's avatar
Clement Remi committed
            self.pin6.direction = Direction.OUTPUT
            self.pin6.value = False
            self.pin7 = self.MCPIHM.get_pin(7) #IHM on mesaurement
Clement Remi's avatar
Clement Remi committed
            self.pin7.direction = Direction.OUTPUT
            self.pin7.value = False           
rpi2.0's avatar
rpi2.0 committed
            if self.idps: 
                if self.DPS.read_register(0x05,2) < 11:
                    self.pin7.value = True# max current allowed (100 mA for relays) #voltage
Clement Remi's avatar
Clement Remi committed
            
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
            # get best voltage to inject AND polarity
            if self.idps:
                tx_volt, polarity = self._compute_tx_volt(
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
                    best_tx_injtime=best_tx_injtime, strategy=strategy, tx_volt=tx_volt)
                self.exec_logger.debug(f'Best vab found is {tx_volt:.3f}V')
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
            else:
                polarity = 1
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
            # first reset the gain to 2/3 before trying to find best gain (mode 0 is continuous)
            self.ads_current = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860,
                                           address=self.ads_current_address, mode=0)
            self.ads_voltage = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860,
                                           address=self.ads_voltage_address, mode=0)
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
            # turn on the power supply
            out_of_range = False
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
            if self.idps:
                if not np.isnan(tx_volt):
                    self.DPS.write_register(0x0000, tx_volt, 2)  # set tx voltage in V
                    self.DPS.write_register(0x09, 1)  # DPS5005 on
                    self.exec_logger.debug('No best voltage found, will not take measurement')
            if not out_of_range:  # we found a Vab in the range so we measure
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
                if autogain:
Clement Remi's avatar
Clement Remi committed
                    if self.board_version == 'mb.2023.0.0':
                        # compute autogain
                        self.pin0.value = True
                        self.pin1.value = False
Clement Remi's avatar
Clement Remi committed
                        self.pin6.value = True # IHM current injection led on
                        time.sleep(injection_duration)
                        gain_current = self._gain_auto(AnalogIn(self.ads_current, ads.P0))
                        if polarity > 0:
                            gain_voltage = self._gain_auto(AnalogIn(self.ads_voltage, ads.P0))
                        else:
                            gain_voltage = self._gain_auto(AnalogIn(self.ads_voltage, ads.P2))
                        self.pin0.value = False
                        self.pin1.value = False
Clement Remi's avatar
Clement Remi committed
                        self.pin6.value = False # IHM current injection led off
                        self.exec_logger.debug(f'Gain current: {gain_current:.3f}, gain voltage: {gain_voltage:.3f}')
                        self.ads_current = ads.ADS1115(self.i2c, gain=gain_current, data_rate=860,
                                                    address=self.ads_current_address, mode=0)
                        self.ads_voltage = ads.ADS1115(self.i2c, gain=gain_voltage, data_rate=860,
                                                    address=self.ads_voltage_address, mode=0)
Clement Remi's avatar
Clement Remi committed
                    elif self.board_version == '22.10':
                        gain_current = 2 / 3
                        gain_voltage = 2 / 3
                        self.ads_current = ads.ADS1115(self.i2c, gain=gain_current, data_rate=860,
                                                    address=self.ads_current_address, mode=0)
                        self.ads_voltage = ads.ADS1115(self.i2c, gain=gain_voltage, data_rate=860,
                                                    address=self.ads_voltage_address, mode=0)                       

                print('gain_voltage', gain_voltage)
                print('gain_current', gain_current)
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
                self.pin0.value = False
                self.pin1.value = False
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
                # one stack = 2 half-cycles (one positive, one negative)
Guillaume Blanchy's avatar
Guillaume Blanchy committed
                pinMN = 0 if polarity > 0 else 2  # noqa

                # sampling for each stack at the end of the injection
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
                sampling_interval = 10  # ms
                self.nb_samples = int(injection_duration * 1000 // sampling_interval) + 1
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
                # full data for waveform
                fulldata = []
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
                #  we sample every 10 ms (as using AnalogIn for both current
                # and voltage takes about 7 ms). When we go over the injection
                # duration, we break the loop and truncate the meas arrays
                # only the last values in meas will be taken into account
                start_time = time.time()  # start counter
                for n in range(0, nb_stack * 2):  # for each half-cycles
                    # current injection
                    if (n % 2) == 0:
                        self.pin0.value = True
                        self.pin1.value = False
Clement Remi's avatar
Clement Remi committed
                        self.pin6.value = True# IHM current injection led on
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
                    else:
                        self.pin0.value = False
                        self.pin1.value = True  # current injection nr2
Clement Remi's avatar
Clement Remi committed
                        self.pin6.value = True# IHM current injection led on
                    self.exec_logger.debug(f'Stack {n} {self.pin0.value} {self.pin1.value}')
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed

                    # measurement of current i and voltage u during injection
                    meas = np.zeros((self.nb_samples, 3)) * np.nan
                    start_delay = time.time()  # stating measurement time
                    dt = 0
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
                    for k in range(0, self.nb_samples):
                        # reading current value on ADS channels
                        meas[k, 0] = (AnalogIn(self.ads_current, ads.P0).voltage * 1000) / (50 * self.r_shunt)
Clement Remi's avatar
Clement Remi committed
                        if self.board_version == 'mb.2023.0.0':
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
                            if pinMN == 0:
                                meas[k, 1] = AnalogIn(self.ads_voltage, ads.P0).voltage * 1000
                            else:
                                meas[k, 1] = -AnalogIn(self.ads_voltage, ads.P2).voltage * 1000
Clement Remi's avatar
Clement Remi committed
                        elif self.board_version == '22.10':
                            meas[k, 1] = -AnalogIn(self.ads_voltage, ads.P0, ads.P1).voltage * self.coef_p2 * 1000
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
                        time.sleep(sampling_interval / 1000)
                        dt = time.time() - start_delay  # real injection time (s)
                        meas[k, 2] = time.time() - start_time
                        if dt > (injection_duration - 0 * sampling_interval / 1000.):
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
                            break
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
                    # stop current injection
                    self.pin0.value = False
                    self.pin1.value = False
Clement Remi's avatar
Clement Remi committed
                    self.pin6.value = False# IHM current injection led on
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
                    end_delay = time.time()

                    # truncate the meas array if we didn't fill the last samples
Guillaume Blanchy's avatar
Guillaume Blanchy committed
                    meas = meas[:k + 1]
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
                    # measurement of current i and voltage u during off time
                    measpp = np.zeros((meas.shape[0], 3)) * np.nan
                    start_delay = time.time()  # stating measurement time
                    dt = 0
                    for k in range(0, measpp.shape[0]):
                        # reading current value on ADS channels
                        measpp[k, 0] = (AnalogIn(self.ads_current, ads.P0).voltage * 1000.) / (50 * self.r_shunt)
Clement Remi's avatar
Clement Remi committed
                        if self.board_version == 'mb.2023.0.0':
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
                            if pinMN == 0:
                                measpp[k, 1] = AnalogIn(self.ads_voltage, ads.P0).voltage * 1000.
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
                            else:
                                measpp[k, 1] = AnalogIn(self.ads_voltage, ads.P2).voltage * 1000. * -1
Clement Remi's avatar
Clement Remi committed
                        elif self.board_version == '22.10':
                            measpp[k, 1] = -AnalogIn(self.ads_voltage, ads.P0, ads.P1).voltage * self.coef_p2 * 1000.
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
                        else:
                            self.exec_logger.debug('unknown board')
                        time.sleep(sampling_interval / 1000)
                        dt = time.time() - start_delay  # real injection time (s)
                        measpp[k, 2] = time.time() - start_time
                        if dt > (injection_duration - 0 * sampling_interval / 1000.):
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
                            break
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
                    end_delay = time.time()
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
                    # truncate the meas array if we didn't fill the last samples
Guillaume Blanchy's avatar
Guillaume Blanchy committed
                    measpp = measpp[:k + 1]
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
                    # we alternate on which ADS1115 pin we measure because of sign of voltage
                    if pinMN == 0:
Guillaume Blanchy's avatar
Guillaume Blanchy committed
                        pinMN = 2  # noqa
Guillaume Blanchy's avatar
Guillaume Blanchy committed
                        pinMN = 0  # noqa
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
                    # store data for full wave form
                    fulldata.append(meas)
                    fulldata.append(measpp)

                # TODO get battery voltage and warn if battery is running low
                # TODO send a message on SOH stating the battery level

remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
                # let's do some calculation (out of the stacking loop)
                i_stack = np.empty((2 * nb_stack, int(meas.shape[0] // 3))) * np.nan
                vmn_stack = np.empty((2 * nb_stack, int(meas.shape[0] // 3))) * np.nan
                # ps_stack = np.empty((2 * nb_stack, int(meas.shape[0] // 3))) * np.nan
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
                for n, meas in enumerate(fulldata[::2]):
                    # take average from the samples per stack, then sum them all
                    # average for the last third of the stacked values
                    #  is done outside the loop
                    i_stack[n] = meas[-int(meas.shape[0] // 3):, 0]
                    vmn_stack[n] = meas[-int(meas.shape[0] // 3):, 1]
                    # ps_stack[n] = (np.mean(meas[-int(meas.shape[0] // 3):, 0]))

Guillaume Blanchy's avatar
Guillaume Blanchy committed
                    sum_i = sum_i + (np.mean(meas[-int(meas.shape[0] // 3):, 0]))
                    vmn1 = np.mean(meas[-int(meas.shape[0] // 3), 1])
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
                    if (n % 2) == 0:
                        sum_vmn = sum_vmn - vmn1
                        sum_ps = sum_ps + vmn1
                    else:
                        sum_vmn = sum_vmn + vmn1
                        sum_ps = sum_ps + vmn1

            else:
                sum_i = np.nan
                sum_vmn = np.nan
                sum_ps = np.nan
            if self.idps:
                self.DPS.write_register(0x0000, 0, 2)  # reset to 0 volt
                self.DPS.write_register(0x09, 0)  # DPS5005 off
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
            # reshape full data to an array of good size
            # we need an array of regular size to save in the csv
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
                fulldata = np.vstack(fulldata)
                # we create a big enough array given nb_samples, number of
                # half-cycles (1 stack = 2 half-cycles), and twice as we
remi.clement@inrae.fr's avatar
remi.clement@inrae.fr committed
                # measure decay as well
                a = np.zeros((nb_stack * self.nb_samples * 2 * 2, 3)) * np.nan
                a[:fulldata.shape[0], :] = fulldata
                fulldata = a
            else:
                np.array([[]])
            vmn_stack_mean = np.mean([np.diff(np.mean(vmn_stack[i*2:i*2+2], axis=1)) / 2 for i in range(nb_stack)])
            vmn_std =np.sqrt((np.std(vmn_stack[::2])**2 + np.std(vmn_stack[1::2]))**2) # np.sum([np.std(vmn_stack[::2]),np.std(vmn_stack[1::2])]) # np.sqrt((np.std(vmn_stack[::2])**2 + np.std(vmn_stack[1::2]))**2)
            i_stack_mean = np.mean(i_stack)
            i_std = np.mean(np.array([np.std(i_stack[::2]), np.std(i_stack[1::2])]))
            r_stack_mean = vmn_stack_mean / i_stack_mean
            r_stack_std = np.sqrt((vmn_std/vmn_stack_mean)**2 + (i_std/i_stack_mean)**2) * r_stack_mean