Newer
Older
start_time = time.time() # start counter
for n in range(0, nb_stack * 2): # for each half-cycles
# current injection
if (n % 2) == 0:
self.pin0.value = True
self.pin1.value = False
if autogain: # select gain computed on first half cycle
self.ads_voltage = ads.ADS1115(self.i2c, gain=np.min(gain_voltage), data_rate=860,
address=self.ads_voltage_address)
self.ads_voltage.mode= Mode.CONTINUOUS
else:
self.pin0.value = False
self.pin1.value = True # current injection nr2
if autogain: # select gain computed on first half cycle
self.ads_voltage = ads.ADS1115(self.i2c, gain=np.min(gain_voltage), data_rate=860,
self.ads_voltage.mode= Mode.CONTINUOUS
Olivier Kaufmann
committed
self.exec_logger.debug(f'Stack {n} {self.pin0.value} {self.pin1.value}')
Arnaud WATLET
committed
if self.board_version == 'mb.2023.0.0':
self.pin6.value = True # IHM current injection led on
# measurement of current i and voltage u during injection
meas = np.zeros((self.nb_samples, 5)) * np.nan
start_delay = time.time() # stating measurement time
dt = 0
Olivier Kaufmann
committed
k = 0
for k in range(0, self.nb_samples):
# reading current value on ADS channels
meas[k, 0] = (AnalogIn(self.ads_current, ads.P0).voltage * 1000) / (50 * self.r_shunt)
# if pinMN == 0:
# meas[k, 1] = AnalogIn(self.ads_voltage, ads.P0).voltage * 1000.
# meas[k, 3] = meas[k, 1]
# meas[k, 4] = AnalogIn(self.ads_voltage, ads.P2).voltage * 1000. * -1.0
# else:
# meas[k, 1] = AnalogIn(self.ads_voltage, ads.P2).voltage * 1000. * -1.0
# meas[k, 4] = meas[k, 1]
# meas[k, 3] = AnalogIn(self.ads_voltage, ads.P0).voltage * 1000.
u0 = AnalogIn(self.ads_voltage, ads.P0).voltage * 1000.
u2 = AnalogIn(self.ads_voltage, ads.P2).voltage * 1000.
u = np.max([u0, u2]) * (np.heaviside(u0 - u2, 1.) * 2 - 1.) - self.vmn_offset
meas[k, 1] = u
meas[k, 3] = u0
meas[k, 4] = u2 *-1.0
meas[k, 1] = -AnalogIn(self.ads_voltage, ads.P0, ads.P1).voltage * self.coef_p2 * 1000
Olivier Kaufmann
committed
# else:
Olivier Kaufmann
committed
# self.exec_logger.debug('Unknown board')
time.sleep(sampling_interval / 1000)
dt = time.time() - start_delay # real injection time (s)
meas[k, 2] = time.time() - start_time
Olivier Kaufmann
committed
if dt > (injection_duration - 0 * sampling_interval / 1000.):
# stop current injection
self.pin0.value = False
self.pin1.value = False
Arnaud WATLET
committed
if self.board_version == 'mb.2023.0.0':
self.pin6.value = False # IHM current injection led on
# truncate the meas array if we didn't fill the last samples #TODO: check why
# measurement of current i and voltage u during off time
measpp = np.zeros((int(meas.shape[0] * (1 / duty_cycle - 1)), 5)) * np.nan
time.sleep(sampling_interval / 1000)
start_delay_off = time.time() # stating measurement time
dt = 0
for k in range(0, measpp.shape[0]):
# reading current value on ADS channels
Olivier Kaufmann
committed
measpp[k, 0] = (AnalogIn(self.ads_current, ads.P0).voltage * 1000.) / (50 * self.r_shunt)
# if pinMN == 0:
# measpp[k, 1] = AnalogIn(self.ads_voltage, ads.P0).voltage * 1000.
# measpp[k, 3] = measpp[k, 1]
# measpp[k, 4] = AnalogIn(self.ads_voltage, ads.P2).voltage * 1000. * -1.0
# else:
# measpp[k, 3] = AnalogIn(self.ads_voltage, ads.P0).voltage * 1000.
# measpp[k, 1] = AnalogIn(self.ads_voltage, ads.P2).voltage * 1000. * -1.0
# measpp[k, 4] = measpp[k, 1]
u0 = AnalogIn(self.ads_voltage, ads.P0).voltage * 1000.
u2 = AnalogIn(self.ads_voltage, ads.P2).voltage * 1000.
u = np.max([u0, u2]) * (np.heaviside(u0 - u2, 1.) * 2 - 1.) - self.vmn_offset
measpp[k, 4] = u2 * -1.0
Olivier Kaufmann
committed
measpp[k, 1] = -AnalogIn(self.ads_voltage, ads.P0, ads.P1).voltage * self.coef_p2 * 1000.
else:
self.exec_logger.debug('unknown board')
time.sleep(sampling_interval / 1000)
dt = time.time() - start_delay_off # real injection time (s)
Olivier Kaufmann
committed
if dt > (injection_duration - 0 * sampling_interval / 1000.):
# truncate the meas array if we didn't fill the last samples
# we alternate on which ADS1115 pin we measure because of sign of voltage
# store data for full wave form
fulldata.append(meas)
fulldata.append(measpp)
# TODO get battery voltage and warn if battery is running low
# TODO send a message on SOH stating the battery level
# let's do some calculation (out of the stacking loop)
# i_stack = np.empty(2 * nb_stack, dtype=object)
# vmn_stack = np.empty(2 * nb_stack, dtype=object)
i_stack, vmn_stack = [], []
# select appropriate window length to average the readings
window = int(np.min([f.shape[0] for f in fulldata[::2]]) // 3)
for n, meas in enumerate(fulldata[::2]):
# take average from the samples per stack, then sum them all
# average for the last third of the stacked values
# is done outside the loop
i_stack.append(meas[-int(window):, 0])
vmn_stack.append(meas[-int(window):, 1])
Arnaud WATLET
committed
sum_i = sum_i + (np.mean(meas[-int(meas.shape[0] // 3):, 0]))
vmn1 = np.mean(meas[-int(meas.shape[0] // 3), 1])
if (n % 2) == 0:
sum_vmn = sum_vmn - vmn1
sum_ps = sum_ps + vmn1
else:
sum_vmn = sum_vmn + vmn1
sum_ps = sum_ps + vmn1
else:
sum_i = np.nan
sum_vmn = np.nan
sum_ps = np.nan
Olivier Kaufmann
committed
fulldata = None
remi.clement@inrae.fr
committed
if self.idps:
self.DPS.write_register(0x0000, 0, 2) # reset to 0 volt
Olivier Kaufmann
committed
self.DPS.write_register(0x09, 0) # DPS5005 off
# reshape full data to an array of good size
# we need an array of regular size to save in the csv
Olivier Kaufmann
committed
if not out_of_range:
fulldata = np.vstack(fulldata)
# we create a big enough array given nb_samples, number of
# half-cycles (1 stack = 2 half-cycles), and twice as we
a = np.zeros((nb_stack * self.nb_samples * 2 * 2, 5)) * np.nan
a[:fulldata.shape[0], :] = fulldata
fulldata = a
else:
np.array([[]])
vmn_stack_mean = np.mean(
[np.diff(np.mean(vmn_stack[i * 2:i * 2 + 2], axis=1)) / 2 for i in range(nb_stack)])
vmn_std = np.sqrt(np.std(vmn_stack[::2]) ** 2 + np.std(
vmn_stack[1::2]) ** 2) # np.sum([np.std(vmn_stack[::2]),np.std(vmn_stack[1::2])])
i_stack_mean = np.mean(i_stack)
i_std = np.mean(np.array([np.std(i_stack[::2]), np.std(i_stack[1::2])]))
r_stack_mean = vmn_stack_mean / i_stack_mean
r_stack_std = np.sqrt((vmn_std / vmn_stack_mean) ** 2 + (i_std / i_stack_mean) ** 2) * r_stack_mean
ps_stack_mean = np.mean(
np.array([np.mean(np.mean(vmn_stack[i * 2:i * 2 + 2], axis=1)) for i in range(nb_stack)]))
# create a dictionary and compute averaged values from all stacks
# if self.board_version == 'mb.2023.0.0':
d = {
"time": datetime.now().isoformat(),
"A": quad[0],
"B": quad[1],
"M": quad[2],
"N": quad[3],
"inj time [ms]": (end_delay - start_delay) * 1000. if not out_of_range else 0.,
"Vmn [mV]": sum_vmn / (2 * nb_stack),
"I [mA]": sum_i / (2 * nb_stack),
"R [ohm]": sum_vmn / sum_i,
"Ps [mV]": sum_ps / (2 * nb_stack),
"nbStack": nb_stack,
"CPU temp [degC]": CPUTemperature().temperature,
"Nb samples [-]": self.nb_samples,
"fulldata": fulldata,
"I_stack [mA]": i_stack_mean,
"I_std [mA]": i_std,
"I_per_stack [mA]": np.array([np.mean(i_stack[i * 2:i * 2 + 2]) for i in range(nb_stack)]),
"Vmn_stack [mV]": vmn_stack_mean,
"Vmn_std [mV]": vmn_std,
"Vmn_per_stack [mV]": np.array(
[np.diff(np.mean(vmn_stack[i * 2:i * 2 + 2], axis=1))[0] / 2 for i in range(nb_stack)]),
"R_stack [ohm]": r_stack_mean,
"R_std [ohm]": r_stack_std,
"R_per_stack [ohm]": np.mean(
[np.diff(np.mean(vmn_stack[i * 2:i * 2 + 2], axis=1)) / 2 for i in range(nb_stack)]) / np.array(
[np.mean(i_stack[i * 2:i * 2 + 2]) for i in range(nb_stack)]),
"PS_per_stack [mV]": np.array(
[np.mean(np.mean(vmn_stack[i * 2:i * 2 + 2], axis=1)) for i in range(nb_stack)]),
"PS_stack [mV]": ps_stack_mean,
"Rab [ohm]": Rab,
"Pab [W]": tx_volt * i_stack_mean/1000.,
"Gain_Vmn": gain,
"Tx_battery [V]":self._read_battery_level()
# print(np.array([(vmn_stack[i*2:i*2+2]) for i in range(nb_stack)]))
# elif self.board_version == '22.10':
# d = {
# "time": datetime.now().isoformat(),
# "A": quad[0],
# "B": quad[1],
# "M": quad[2],
# "N": quad[3],
# "inj time [ms]": (end_delay - start_delay) * 1000. if not out_of_range else 0.,
# "Vmn [mV]": sum_vmn / (2 * nb_stack),
# "I [mA]": sum_i / (2 * nb_stack),
# "R [ohm]": sum_vmn / sum_i,
# "Ps [mV]": sum_ps / (2 * nb_stack),
# "nbStack": nb_stack,
# "Tx [V]": tx_volt if not out_of_range else 0.,
# "CPU temp [degC]": CPUTemperature().temperature,
# "Nb samples [-]": self.nb_samples,
# "fulldata": fulldata,
# }
else: # for testing, generate random data
d = {'time': datetime.now().isoformat(), 'A': quad[0], 'B': quad[1], 'M': quad[2], 'N': quad[3],
'R [ohm]': np.abs(np.random.randn(1)).tolist()}
dd.update({'A': str(dd['A'])})
dd.update({'B': str(dd['B'])})
dd.update({'M': str(dd['M'])})
dd.update({'N': str(dd['N'])})
# round float to 2 decimal
for key in dd.keys():
if isinstance(dd[key], float):
dd[key] = np.round(dd[key], 3)
dd['cmd_id'] = str(cmd_id)
self.data_logger.info(dd)
self.pin5.value = False # IHM led on measurement off
if self.sequence is None:
def run_multiple_sequences(self, cmd_id=None, sequence_delay=None, nb_meas=None, **kwargs):
"""Runs multiple sequences in a separate thread for monitoring mode.
Can be stopped by 'OhmPi.interrupt()'.
Additional arguments are passed to run_measurement().
Parameters
----------
cmd_id : str, optional
Unique command identifier
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
sequence_delay : int, optional
Number of seconds at which the sequence must be started from each others.
nb_meas : int, optional
Number of time the sequence must be repeated.
kwargs : dict, optional
See help(k.run_measurement) for more info.
"""
# self.run = True
if sequence_delay is None:
sequence_delay = self.settings['sequence_delay']
sequence_delay = int(sequence_delay)
if nb_meas is None:
nb_meas = self.settings['nb_meas']
self.status = 'running'
self.exec_logger.debug(f'Status: {self.status}')
self.exec_logger.debug(f'Measuring sequence: {self.sequence}')
def func():
for g in range(0, nb_meas): # for time-lapse monitoring
if self.status == 'stopping':
self.exec_logger.warning('Data acquisition interrupted')
break
t0 = time.time()
self.run_sequence(**kwargs)
# sleeping time between sequence
dt = sequence_delay - (time.time() - t0)
if dt < 0:
dt = 0
if nb_meas > 1:
time.sleep(dt) # waiting for next measurement (time-lapse)
self.status = 'idle'
self.thread = threading.Thread(target=func)
self.thread.start()
def run_sequence(self, cmd_id=None, plot_realtime_fulldata=False, plot_ads=False, **kwargs):
Olivier Kaufmann
committed
"""Runs sequence synchronously (=blocking on main thread).
Additional arguments are passed to run_measurement().
Parameters
----------
cmd_id : str, optional
Unique command identifier
Olivier Kaufmann
committed
"""
self.status = 'running'
self.exec_logger.debug(f'Status: {self.status}')
self.exec_logger.debug(f'Measuring sequence: {self.sequence}')
t0 = time.time()
self.reset_mux()
Olivier Kaufmann
committed
# create filename with timestamp
filename = self.settings["export_path"].replace('.csv',
f'_{datetime.now().strftime("%Y%m%dT%H%M%S")}.csv')
self.exec_logger.debug(f'Saving to {filename}')
# make sure all multiplexer are off
Olivier Kaufmann
committed
# measure all quadrupole of the sequence
if self.sequence is None:
n = 1
else:
n = self.sequence.shape[0]
for i in range(0, n):
if self.sequence is None:
quad = np.array([0, 0, 0, 0])
else:
quad = self.sequence[i, :] # quadrupole
if self.status == 'stopping':
break
if i == 0:
# call the switch_mux function to switch to the right electrodes
# switch on DPS
self.mcp_board = MCP23008(self.i2c, address=self.mcp_board_address)
self.pin2 = self.mcp_board.get_pin(2) # dsp -
self.pin2.direction = Direction.OUTPUT
self.pin2.value = True
self.pin3 = self.mcp_board.get_pin(3) # dsp -
self.pin3.direction = Direction.OUTPUT
self.pin3.value = True
time.sleep (4)
Olivier Kaufmann
committed
#self.switch_dps('on')
time.sleep(.6)
Olivier Kaufmann
committed
self.switch_mux_on(quad)
# run a measurement
if self.on_pi:
acquired_data = self.run_measurement(quad, **kwargs)
else: # for testing, generate random data
sum_vmn = np.random.rand(1)[0] * 1000.
sum_i = np.random.rand(1)[0] * 100.
cmd_id = np.random.randint(1000)
Olivier Kaufmann
committed
acquired_data = {
"time": datetime.now().isoformat(),
"A": quad[0],
"B": quad[1],
"M": quad[2],
"N": quad[3],
"inj time [ms]": self.settings['injection_duration'] * 1000.,
"Vmn [mV]": sum_vmn,
"I [mA]": sum_i,
"R [ohm]": sum_vmn / sum_i,
"Ps [mV]": np.random.randn(1)[0] * 100.,
"nbStack": self.settings['nb_stack'],
"Tx [V]": np.random.randn(1)[0] * 5.,
"CPU temp [degC]": np.random.randn(1)[0] * 50.,
"Nb samples [-]": self.nb_samples,
Olivier Kaufmann
committed
}
self.data_logger.info(acquired_data)
Olivier Kaufmann
committed
# switch mux off
self.switch_mux_off(quad)
# add command_id in dataset
acquired_data.update({'cmd_id': cmd_id})
# log data to the data logger
Olivier Kaufmann
committed
# save data and print in a text file
self.append_and_save(filename, acquired_data)
self.exec_logger.debug(f'quadrupole {i + 1:d}/{n:d}')
if plot_realtime_fulldata:
realtime_plot_window = 10
plt.ion()
last_measurement = acquired_data["fulldata"][~np.isnan(acquired_data["fulldata"][:, 2])]
if i==0:
xlim = [last_measurement[:, 2][-1] - realtime_plot_window, last_measurement[:, 2][-1]]
fig, (ax1, ax2), lines = plot_fulldata(last_measurement, realtime=True, xlim=xlim, plot_ads=plot_ads)
acquired_dataset = last_measurement
else:
fig, (ax1, ax2), lines, acquired_dataset = \
update_realtime_fulldata_plot(last_measurement, acquired_dataset, lines,
(ax1, ax2), fig, x_window=realtime_plot_window,plot_ads=plot_ads)
Olivier Kaufmann
committed
self.status = 'idle'
return fig,(ax1,ax2), (line1,line2), filename, acquired_dataset
else:
return filename
Olivier Kaufmann
committed
def run_sequence_async(self, cmd_id=None, **kwargs):
"""Runs the sequence in a separate thread. Can be stopped by 'OhmPi.interrupt()'.
Additional arguments are passed to run_measurement().
Parameters
----------
cmd_id : str, optional
Unique command identifier
Olivier Kaufmann
committed
"""
def func():
self.run_sequence(**kwargs)
self.thread = threading.Thread(target=func)
self.thread.start()
self.status = 'idle'
def rs_check(self, tx_volt=12., cmd_id=None):
"""Checks contact resistances
Parameters
----------
tx_volt : float
Voltage of the injection
cmd_id : str, optional
Unique command identifier
"""
# we only check the electrodes which are in the sequence (not all might be connected)
quads = np.array([[1, 2, 1, 2]], dtype=np.uint32)
Olivier Kaufmann
committed
else:
elec = np.sort(np.unique(self.sequence.flatten())) # assumed order
quads = np.vstack([
elec[:-1],
elec[1:],
elec[:-1],
elec[1:],
]).T
if self.idps:
quads[:, 2:] = 0 # we don't open Vmn to prevent burning the MN part
# as it has a smaller range of accepted voltage
export_path_rs = self.settings['export_path'].replace('.csv', '') \
+ '_' + datetime.now().strftime('%Y%m%dT%H%M%S') + '_rs.csv'

Guillaume Blanchy
committed
Olivier Kaufmann
committed
# self.run = True
if self.on_pi:
# make sure all mux are off to start with
self.reset_mux()
# measure all quad of the RS sequence
for i in range(0, quads.shape[0]):
quad = quads[i, :] # quadrupole
self.switch_mux_on(quad) # put before raising the pins (otherwise conflict i2c)
d = self.run_measurement(quad=quad, nb_stack=1, injection_duration=0.2, tx_volt=tx_volt, autogain=False)
Olivier Kaufmann
committed
voltage = tx_volt * 1000. # imposed voltage on dps5005
else:
voltage = d['Vmn [mV]']
current = d['I [mA]']
# compute resistance measured (= contact resistance)
Olivier Kaufmann
committed
resist = abs(voltage / current) / 1000.
# print(str(quad) + '> I: {:>10.3f} mA, V: {:>10.3f} mV, R: {:>10.3f} kOhm'.format(
msg = f'Contact resistance {str(quad):s}: I: {current * 1000.:>10.3f} mA, ' \
f'V: {voltage :>10.3f} mV, ' \
f'R: {resist :>10.3f} kOhm'
self.exec_logger.debug(msg)
# if contact resistance = 0 -> we have a short circuit!!
Olivier Kaufmann
committed
msg = f'!!!SHORT CIRCUIT!!! {str(quad):s}: {resist:.3f} kOhm'
self.exec_logger.warning(msg)
Olivier Kaufmann
committed
# save data in a text file
self.append_and_save(export_path_rs, {
'A': quad[0],
'B': quad[1],
'RS [kOhm]': resist,
})
# close mux path and put pin back to GND
self.switch_mux_off(quad)
else:
pass
self.status = 'idle'
Olivier Kaufmann
committed
#
# # TODO if interrupted, we would need to restore the values
# # TODO or we offer the possibility in 'run_measurement' to have rs_check each time?
Olivier Kaufmann
committed
def set_sequence(self, sequence=None, cmd_id=None):
"""Sets the sequence to acquire
Parameters
----------
sequence : list, str
sequence of quadrupoles
cmd_id: str, optional
Unique command identifier
"""
self.sequence = np.array(sequence).astype(int)
# self.sequence = np.loadtxt(StringIO(sequence)).astype('uint32')
status = True
except Exception as e:
self.exec_logger.warning(f'Unable to set sequence: {e}')
status = False
def stop(self, **kwargs):
warnings.warn('This function is deprecated. Use interrupt instead.', DeprecationWarning)
self.interrupt(**kwargs)
def _switch_mux(self, electrode_nr, state, role):
"""Selects the right channel for the multiplexer cascade for a given electrode.
Olivier Kaufmann
committed
Parameters
----------
electrode_nr : int
Electrode index to be switched on or off.
state : str
Either 'on' or 'off'.
role : str
Either 'A', 'B', 'M' or 'N', so we can assign it to a MUX board.
"""
Olivier Kaufmann
committed
if not self.use_mux or not self.on_pi:
if not self.on_pi:
self.exec_logger.warning('Cannot reset mux while in simulation mode...')
Olivier Kaufmann
committed
self.exec_logger.warning('You cannot use the multiplexer because use_mux is set to False.'
' Set use_mux to True to use the multiplexer...')
Arnaud WATLET
committed
elif self.sequence is None and not self.use_mux:
Olivier Kaufmann
committed
self.exec_logger.warning('Unable to switch MUX without a sequence')
else:
# choose with MUX board
tca = adafruit_tca9548a.TCA9548A(self.i2c, self.board_addresses[role])
Olivier Kaufmann
committed
# find I2C address of the electrode and corresponding relay
# considering that one MCP23017 can cover 16 electrodes
i2c_address = 7 - (electrode_nr - 1) // 16 # quotient without rest of the division
relay_nr = (electrode_nr-1) - ((electrode_nr-1) // 16) * 16
Olivier Kaufmann
committed
if i2c_address is not None:
# select the MCP23017 of the selected MUX board
mcp2 = MCP23017(tca[i2c_address])
mcp2.get_pin(relay_nr).direction = digitalio.Direction.OUTPUT
Olivier Kaufmann
committed
if state == 'on':
Olivier Kaufmann
committed
else:
Olivier Kaufmann
committed
self.exec_logger.debug(f'Switching relay {relay_nr} '
f'({str(hex(self.board_addresses[role]))}) {state} for electrode {electrode_nr}')
else:
self.exec_logger.warning(f'Unable to address electrode nr {electrode_nr}')
Olivier Kaufmann
committed
def switch_dps(self,state='off'):
"""Switches DPS on or off.
Parameters
----------
state : str
'on', 'off'
"""
self.pin3.direction = Direction.OUTPUT
if state == 'on':
self.pin2.value = True
self.pin3.value = True
self.exec_logger.debug(f'Switching DPS on')
time.sleep(4)
elif state == 'off':
self.pin2.value = False
self.pin3.value = False
self.exec_logger.debug(f'Switching DPS off')
Olivier Kaufmann
committed
def switch_mux_on(self, quadrupole, cmd_id=None):
Olivier Kaufmann
committed
"""Switches on multiplexer relays for given quadrupole.
Olivier Kaufmann
committed
Olivier Kaufmann
committed
Parameters
----------
cmd_id : str, optional
Unique command identifier
Olivier Kaufmann
committed
quadrupole : list of 4 int
List of 4 integers representing the electrode numbers.
Olivier Kaufmann
committed
roles = ['A', 'B', 'M', 'N']
# another check to be sure A != B
if quadrupole[0] != quadrupole[1]:
for i in range(0, 4):
if quadrupole[i] > 0:
self._switch_mux(quadrupole[i], 'on', roles[i])
else:
self.exec_logger.error('Not switching MUX : A == B -> short circuit risk detected!')
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
def ohmpi_to_bert(self,fname,abmn_file,coord_file):
"""Export data to BERT format.
Parameters
----------
"""
abmn = np.loadtxt(abmn_file)
nbr_abmn = len(abmn)
data = np.loadtxt(fname, comments = '#', delimiter = ',',
converters = None, skiprows = 1, usecols = [1,2,3,4,6,7], unpack = False,
ndmin = 0, encoding = 'bytes', max_rows = None)
coord = np.loadtxt(coord_file)
with open(fname +'data.dat','w') as rho_data:
rho_data.write(str(len(coord)))
rho_data.write('\n')
rho_data.write('# x y z')
rho_data.write('\n')
np.savetxt(rho_data,coord,delimiter=' ',fmt='%1.3f')
rho_data.write(str(len(data)))
rho_data.write('\n')
rho_data.write('# a b m n u i ')
rho_data.write('\n')
np.savetxt(rho_data,data, fmt='%i %i %i %i %1.3f %1.3f')
Olivier Kaufmann
committed
def switch_mux_off(self, quadrupole, cmd_id=None):
Olivier Kaufmann
committed
"""Switches off multiplexer relays for given quadrupole.
cmd_id : str, optional
Unique command identifier
Olivier Kaufmann
committed
quadrupole : list of 4 int
List of 4 integers representing the electrode numbers.
Olivier Kaufmann
committed
roles = ['A', 'B', 'M', 'N']
for i in range(0, 4):
if quadrupole[i] > 0:
self._switch_mux(quadrupole[i], 'off', roles[i])
Olivier Kaufmann
committed
def test_led(self):
"""Interactive method to test the multiplexer."""
self.mcp_board = MCP23008(self.i2c, address=self.mcp_board_address)
self.pin4 = self.mcp_board.get_pin(4) # Ohmpi_run
self.pin4.direction = Direction.OUTPUT
self.pin5 = self.mcp_board.get_pin(5) # measurement_run
self.pin5.direction = Direction.OUTPUT
self.pin6 = self.mcp_board.get_pin(6) # stack_run
self.pin6.direction = Direction.OUTPUT
self.pin7 = self.mcp_board.get_pin(7) # battery_off
self.pin7.direction = Direction.OUTPUT
self.pin4.value = True
self.pin5.value = True
self.pin6.value = True
self.pin7.value = True
time.sleep(0.5)
self.pin4.value = False
self.pin5.value = False
self.pin6.value = False
self.pin7.value = False
time.sleep(0.5)

Guillaume Blanchy
committed
def test_mux(self, activation_time=1.0, address=0x70):
"""Interactive method to test the multiplexer.
Parameters
----------
activation_time : float, optional
Time in seconds during which the relays are activated.
address : hex, optional
Address of the multiplexer board to test (e.g. 0x70, 0x71, ...).
"""
self.use_mux = True
self.reset_mux()
# choose with MUX board
tca = adafruit_tca9548a.TCA9548A(self.i2c, address)
# ask use some details on how to proceed
a = input('If you want try 1 channel choose 1, if you want try all channels choose 2!')

Guillaume Blanchy
committed
if a == '1':
print('run channel by channel test')
electrode = int(input('Choose your electrode number (integer):'))

Guillaume Blanchy
committed
electrodes = [electrode]
elif a == '2':
electrodes = range(1, 65)
else:
print('Wrong choice !')
return
# run the test

Guillaume Blanchy
committed
for electrode_nr in electrodes:
# find I2C address of the electrode and corresponding relay
# considering that one MCP23017 can cover 16 electrodes
i2c_address = 7 - (electrode_nr - 1) // 16 # quotient without rest of the division
relay_nr = (electrode_nr-1) - ((electrode_nr-1) // 16) * 16

Guillaume Blanchy
committed
if i2c_address is not None:
# select the MCP23017 of the selected MUX board
mcp2 = MCP23017(tca[i2c_address])
mcp2.get_pin(relay_nr).direction = digitalio.Direction.OUTPUT

Guillaume Blanchy
committed
# activate relay for given time
mcp2.get_pin(relay_nr).value = True
print('electrode:', electrode_nr, ' activated...', end='', flush=True)
time.sleep(activation_time)
mcp2.get_pin(relay_nr).value = False
print(' deactivated')
time.sleep(activation_time)

Guillaume Blanchy
committed
print('Test finished.')
Olivier Kaufmann
committed
def reset_mux(self, cmd_id=None):
"""Switches off all multiplexer relays.
Parameters
----------
cmd_id : str, optional
Unique command identifier
"""
Olivier Kaufmann
committed
if self.on_pi and self.use_mux:
roles = ['A', 'B', 'M', 'N']
for i in range(0, 4):
for j in range(1, self.max_elec + 1):
self._switch_mux(j, 'off', roles[i])
self.exec_logger.debug('All MUX switched off.')
elif not self.on_pi:
self.exec_logger.warning('Cannot reset mux while in simulation mode...')
else:
self.exec_logger.warning('You cannot use the multiplexer because use_mux is set to False.'
' Set use_mux to True to use the multiplexer...')
Olivier Kaufmann
committed
def _update_acquisition_settings(self, config):
warnings.warn('This function is deprecated, use update_settings() instead.', DeprecationWarning)
def update_settings(self, settings: str, cmd_id=None):
Olivier Kaufmann
committed
"""Updates acquisition settings from a json file or dictionary.
Parameters can be:
- nb_electrodes (number of electrode used, if 4, no MUX needed)
- injection_duration (in seconds)
- nb_meas (total number of times the sequence will be run)
- sequence_delay (delay in second between each sequence run)
- nb_stack (number of stack for each quadrupole measurement)
- export_path (path where to export the data, timestamp will be added to filename)
Olivier Kaufmann
committed
Parameters
----------
Olivier Kaufmann
committed
Path to the .json settings file or dictionary of settings.
cmd_id : str, optional
Unique command identifier
Olivier Kaufmann
committed
"""
status = False
Olivier Kaufmann
committed
try:
if isinstance(settings, dict):
self.settings.update(settings)
Olivier Kaufmann
committed
else:
Olivier Kaufmann
committed
dic = json.load(json_file)
self.settings.update(dic)
self.exec_logger.debug('Acquisition parameters updated: ' + str(self.settings))
status = True
Olivier Kaufmann
committed
self.exec_logger.warning('Unable to update settings.')
status = False
Olivier Kaufmann
committed
else:
Olivier Kaufmann
committed
self.exec_logger.warning('Settings are missing...')
return status
Olivier Kaufmann
committed
# Properties
@property
def sequence(self):
"""Gets sequence"""
if self._sequence is not None:
assert isinstance(self._sequence, np.ndarray)
return self._sequence
Olivier Kaufmann
committed
Olivier Kaufmann
committed
@sequence.setter
def sequence(self, sequence):
"""Sets sequence"""
if sequence is not None:
assert isinstance(sequence, np.ndarray)
self.use_mux = True
else:
self.use_mux = False
self._sequence = sequence
Olivier Kaufmann
committed
print(colored(r' ________________________________' + '\n' +
r'| _ | | | || \/ || ___ \_ _|' + '\n' +
r'| | | | |_| || . . || |_/ / | |' + '\n' +
r'| | | | _ || |\/| || __/ | |' + '\n' +
r'\ \_/ / | | || | | || | _| |_' + '\n' +
r' \___/\_| |_/\_| |_/\_| \___/ ', 'red'))
print('Version:', VERSION)
Olivier Kaufmann
committed
platform, on_pi = get_platform()
Olivier Kaufmann
committed
print(colored(f'\u2611 Running on {platform} platform', 'green'))
Olivier Kaufmann
committed
# TODO: check model for compatible platforms (exclude Raspberry Pi versions that are not supported...)
# and emit a warning otherwise
if not arm64_imports:
print(colored(f'Warning: Required packages are missing.\n'
f'Please run ./env.sh at command prompt to update your virtual environment\n', 'yellow'))
Olivier Kaufmann
committed
print(colored(f'\u26A0 Not running on the Raspberry Pi platform.\nFor simulation purposes only...', 'yellow'))
Olivier Kaufmann
committed
print(f'local date and time : {current_time.strftime("%Y-%m-%d %H:%M:%S")}')
# for testing
if __name__ == "__main__":
ohmpi = OhmPi(settings=OHMPI_CONFIG['settings'])
Olivier Kaufmann
committed
if ohmpi.controller is not None:
ohmpi.controller.loop_forever()