Newer
Older
created on January 6, 2020.
Hardware: Licensed under CERN-OHL-S v2 or any later version
Software: Licensed under the GNU General Public License v3.0
Ohmpi.py is a program to control a low-cost and open hardware resistivity meter OhmPi that has been developed by
Olivier Kaufmann
committed
Rémi CLEMENT (INRAE), Vivien DUBOIS (INRAE), Hélène GUYARD (IGE), Nicolas FORQUET (INRAE), Yannick FARGIER (IFSTTAR)
Olivier KAUFMANN (UMONS), Arnaud WATLET (UMONS) and Guillaume BLANCHY (FNRS/ULiege).
Olivier Kaufmann
committed
from utils import get_platform
from datetime import datetime
from termcolor import colored
import threading
from logging_setup import setup_loggers
Olivier Kaufmann
committed
from config import MQTT_CONTROL_CONFIG, OHMPI_CONFIG, EXEC_LOGGING_CONFIG
from logging import DEBUG
from plots import *
Olivier Kaufmann
committed
# finish import (done only when class is instantiated as some libs are only available on arm64 platform)
Olivier Kaufmann
committed
import board # noqa
import busio # noqa
import adafruit_tca9548a # noqa
import adafruit_ads1x15.ads1115 as ads # noqa
from adafruit_ads1x15.analog_in import AnalogIn # noqa
from adafruit_ads1x15.ads1x15 import Mode
Olivier Kaufmann
committed
from adafruit_mcp230xx.mcp23008 import MCP23008 # noqa
from adafruit_mcp230xx.mcp23017 import MCP23017 # noqa
from adafruit_extended_bus import ExtendedI2C
Olivier Kaufmann
committed
import digitalio # noqa
from digitalio import Direction # noqa
from gpiozero import CPUTemperature # noqa
arm64_imports = True
Olivier Kaufmann
committed
if EXEC_LOGGING_CONFIG['logging_level'] == DEBUG:
print(colored(f'Import error: {error}', 'yellow'))
arm64_imports = False
except Exception as error:
print(colored(f'Unexpected error: {error}', 'red'))
Olivier Kaufmann
committed
arm64_imports = None
Olivier Kaufmann
committed
""" OhmPi class.
def __init__(self, settings=None, sequence=None, use_mux=False, mqtt=True, onpi=None, idps=False):
Olivier Kaufmann
committed
"""Constructs the ohmpi object
Olivier Kaufmann
committed
Olivier Kaufmann
committed
Parameters
----------
settings:
sequence:
use_mux:
if True use the multiplexor to select active electrodes
mqtt: bool, defaut: True
if True publish on mqtt topics while logging, otherwise use other loggers only
Olivier Kaufmann
committed
onpi: bool,None default: None
Olivier Kaufmann
committed
if None, the platform on which the class is instantiated is determined to set on_pi to either True or False.
if False the behaviour of an ohmpi will be partially emulated and return random data.
Olivier Kaufmann
committed
idps:
if true uses the DPS
"""
Olivier Kaufmann
committed
Olivier Kaufmann
committed
if onpi is None:
_, onpi = get_platform()
Olivier Kaufmann
committed
self.nb_samples = 0
Olivier Kaufmann
committed
self.on_pi = onpi # True if run from the RaspberryPi with the hardware, otherwise False for random data
self.status = 'idle' # either running or idle
self.thread = None # contains the handle for the thread taking the measurement
Olivier Kaufmann
committed
# set loggers
Olivier Kaufmann
committed
config_exec_logger, _, config_data_logger, _, _, msg = setup_loggers(mqtt=mqtt) # TODO: add SOH
Olivier Kaufmann
committed
self.data_logger = config_data_logger
self.exec_logger = config_exec_logger
Olivier Kaufmann
committed
self.soh_logger = None # TODO: Implement the SOH logger
print(msg)
Olivier Kaufmann
committed
# read in hardware parameters (config.py)
self._read_hardware_config()
# default acquisition settings
self.settings = {
rpi2.0
committed
'nb_meas': 1,
'sequence_delay': 1,
'nb_stack': 1,
'export_path': 'data/measurement.csv',
'tx_volt': 5
# read in acquisition settings
if settings is not None:
self.exec_logger.debug('Initialized with settings:' + str(self.settings))
Olivier Kaufmann
committed
if sequence is not None:
remi.clement@inrae.fr
committed
self.idps = idps # flag to use dps for injection or not
self.i2c = busio.I2C(board.SCL, board.SDA) # noqa
if self.i2c_mux_address == 2:
self.i2c_mux = self.i2c
else:
self.i2c_mux = ExtendedI2C(self.i2c_mux_address)
# I2C connexion to MCP23008, for current injection
self.mcp_board = MCP23008(self.i2c, address=self.mcp_board_address)
self.pin4 = self.mcp_board.get_pin(4) # Ohmpi_run
self.pin4.direction = Direction.OUTPUT
self.pin4.value = True
self.ads_current_address = 0x48
self.ads_current = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=self.ads_current_address)
self.ads_voltage_address = 0x49
self.ads_voltage = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=self.ads_voltage_address)
# current injection module
remi.clement@inrae.fr
committed
if self.idps:
self.pin2 = self.mcp_board.get_pin(2) # dsp +
self.pin2.direction = Direction.OUTPUT
self.pin2.value = True
self.pin3 = self.mcp_board.get_pin(3) # dsp -
self.pin3.direction = Direction.OUTPUT
self.pin3.value = True
Olivier Kaufmann
committed
self.DPS = minimalmodbus.Instrument(port='/dev/ttyUSB0', slaveaddress=1) # port name, address (decimal)
self.DPS.serial.baudrate = 9600 # Baud rate 9600 as listed in doc
self.DPS.serial.bytesize = 8 #
self.DPS.serial.timeout = 1 # greater than 0.5 for it to work
self.DPS.debug = False #
self.DPS.serial.parity = 'N' # No parity
self.DPS.mode = minimalmodbus.MODE_RTU # RTU mode
self.DPS.write_register(0x0001, 200, 0) # max current allowed (100 mA for relays)
remi.clement@inrae.fr
committed
# (last number) 0 is for mA, 3 is for A
#self.soh_logger.debug(f'Battery voltage: {self.DPS.read_register(0x05,2 ):.3f}') TODO: SOH logger
batt_level = self._read_battery_level()
msg = f'Battery voltage: {batt_level:.3f}'
if batt_level < 12:
print(colored(f'\u2611 {msg}', 'red'))
else:
print(colored(f'\u2611 {msg}', 'green'))
# injection courant and measure (TODO check if it works, otherwise back in run_measurement())
self.pin0 = self.mcp_board.get_pin(0)
self.pin0.direction = Direction.OUTPUT
self.pin0.value = False
self.pin1 = self.mcp_board.get_pin(1)
self.pin1.direction = Direction.OUTPUT
self.pin1.value = False
# set controller
self.mqtt = mqtt
self.cmd_id = None
Olivier Kaufmann
committed
if self.mqtt:
import paho.mqtt.client as mqtt_client
self.exec_logger.debug(f"Connecting to control topic {MQTT_CONTROL_CONFIG['ctrl_topic']}"
f" on {MQTT_CONTROL_CONFIG['hostname']} broker")
def connect_mqtt() -> mqtt_client:
def on_connect(mqttclient, userdata, flags, rc):
Olivier Kaufmann
committed
self.exec_logger.debug(f"Successfully connected to control broker:"
f" {MQTT_CONTROL_CONFIG['hostname']}")
Olivier Kaufmann
committed
self.exec_logger.warning(f'Failed to connect to control broker. Return code : {rc}')
Olivier Kaufmann
committed
client = mqtt_client.Client(f"ohmpi_{OHMPI_CONFIG['id']}_listener", clean_session=False)
client.username_pw_set(MQTT_CONTROL_CONFIG['auth'].get('username'),
MQTT_CONTROL_CONFIG['auth']['password'])
client.on_connect = on_connect
Olivier Kaufmann
committed
client.connect(MQTT_CONTROL_CONFIG['hostname'], MQTT_CONTROL_CONFIG['port'])
Olivier Kaufmann
committed
try:
self.exec_logger.debug(f"Connecting to control broker: {MQTT_CONTROL_CONFIG['hostname']}")
self.controller = connect_mqtt()
except Exception as e:
self.exec_logger.debug(f'Unable to connect control broker: {e}')
self.controller = None
if self.controller is not None:
self.exec_logger.debug(f"Subscribing to control topic {MQTT_CONTROL_CONFIG['ctrl_topic']}")
try:
self.controller.subscribe(MQTT_CONTROL_CONFIG['ctrl_topic'], MQTT_CONTROL_CONFIG['qos'])
msg = f"Subscribed to control topic {MQTT_CONTROL_CONFIG['ctrl_topic']}" \
f" on {MQTT_CONTROL_CONFIG['hostname']} broker"
self.exec_logger.debug(msg)
print(colored(f'\u2611 {msg}', 'blue'))
except Exception as e:
self.exec_logger.warning(f'Unable to subscribe to control topic : {e}')
self.controller = None
publisher_config = MQTT_CONTROL_CONFIG.copy()
publisher_config['topic'] = MQTT_CONTROL_CONFIG['ctrl_topic']
publisher_config.pop('ctrl_topic')
def on_message(client, userdata, message):
command = message.payload.decode('utf-8')
Olivier Kaufmann
committed
self.exec_logger.debug(f'Received command {command}')
self._process_commands(command)
Olivier Kaufmann
committed
self.controller.on_message = on_message
else:
self.controller = None
self.exec_logger.warning('No connection to control broker.'
' Use python/ipython to interact with OhmPi object...')
Olivier Kaufmann
committed
@staticmethod
Olivier Kaufmann
committed
def append_and_save(filename: str, last_measurement: dict, cmd_id=None):
Olivier Kaufmann
committed
"""Appends and saves the last measurement dict.
Olivier Kaufmann
committed
Parameters
----------
filename : str
filename to save the last measurement dataframe
last_measurement : dict
Last measurement taken in the form of a python dictionary
cmd_id : str, optional
Unique command identifier
Olivier Kaufmann
committed
"""
last_measurement = deepcopy(last_measurement)
if 'fulldata' in last_measurement:
d = last_measurement['fulldata']
n = d.shape[0]
if n > 1:
idic = dict(zip(['i' + str(i) for i in range(n)], d[:, 0]))
udic = dict(zip(['u' + str(i) for i in range(n)], d[:, 1]))
tdic = dict(zip(['t' + str(i) for i in range(n)], d[:, 2]))
uxdic = dict(zip(['ux' + str(i) for i in range(n)], d[:, 3]))
uydic = dict(zip(['uy' + str(i) for i in range(n)], d[:, 4]))
Olivier Kaufmann
committed
last_measurement.update(idic)
last_measurement.update(udic)
last_measurement.update(tdic)
last_measurement.update(uxdic)
last_measurement.update(uydic)
Olivier Kaufmann
committed
last_measurement.pop('fulldata')
Olivier Kaufmann
committed
if os.path.isfile(filename):
# Load data file and append data to it
with open(filename, 'a') as f:
w = csv.DictWriter(f, last_measurement.keys())
w.writerow(last_measurement)
# last_measurement.to_csv(f, header=False)
else:
# create data file and add headers
with open(filename, 'a') as f:
w = csv.DictWriter(f, last_measurement.keys())
w.writeheader()
w.writerow(last_measurement)
def _compute_tx_volt(self, best_tx_injtime=0.1, strategy='vmax', tx_volt=5, autogain=True):
Olivier Kaufmann
committed
"""Estimates best Tx voltage based on different strategies.
At first a half-cycle is made for a short duration with a fixed
known voltage. This gives us Iab and Rab. We also measure Vmn.
A constant c = vmn/iab is computed (only depends on geometric
factor and ground resistivity, that doesn't change during a
quadrupole). Then depending on the strategy, we compute which
vab to inject to reach the minimum/maximum Iab current or
min/max Vmn.
This function also compute the polarity on Vmn (on which pin
of the ADS1115 we need to measure Vmn to get the positive value).
Olivier Kaufmann
committed
best_tx_injtime : float, optional
Time in milliseconds for the half-cycle used to compute Rab.
strategy : str, optional
Either:
- vmax : compute Vab to reach a maximum Iab and Vmn
- constant : apply given Vab
tx_volt : float, optional
Voltage to apply for guessing the best voltage. 5 V applied
Olivier Kaufmann
committed
by default. If strategy "constant" is chosen, constant voltage
to applied is "tx_volt".
Returns
-------
vab : float
Proposed Vab according to the given strategy.
polarity : int
Either 1 or -1 to know on which pin of the ADS the Vmn is measured.
Olivier Kaufmann
committed
# hardware limits
voltage_min = 10. # mV
voltage_max = 4500.
current_min = voltage_min / (self.r_shunt * 50) # mA
current_max = voltage_max / (self.r_shunt * 50)
Olivier Kaufmann
committed
# check of volt
volt = tx_volt
if volt > tx_max:
self.exec_logger.warning('Sorry, cannot inject more than 50 V, set it back to 5 V')
Olivier Kaufmann
committed
volt = 5.
# redefined the pin of the mcp (needed when relays are connected)
self.pin0 = self.mcp_board.get_pin(0)
Olivier Kaufmann
committed
self.pin0.direction = Direction.OUTPUT
self.pin0.value = False
self.pin1 = self.mcp_board.get_pin(1)
Olivier Kaufmann
committed
self.pin1.direction = Direction.OUTPUT
self.pin1.value = False
# select a polarity to start with
self.pin0.value = True
self.pin1.value = False
if strategy == 'constant':
vab = volt
self.DPS.write_register(0x0000, volt, 2)
self.DPS.write_register(0x09, 1) # DPS5005 on
time.sleep(best_tx_injtime) # inject for given tx time
self.ads_current = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=self.ads_current_address)
self.ads_voltage = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=self.ads_voltage_address)
# autogain
if autogain:
gain_current = self._gain_auto(AnalogIn(self.ads_current, ads.P0))
gain_voltage0 = self._gain_auto(AnalogIn(self.ads_voltage, ads.P0))
gain_voltage2 = self._gain_auto(AnalogIn(self.ads_voltage, ads.P2))
gain_voltage = np.min([gain_voltage0, gain_voltage2]) # TODO: separate gain for P0 and P2
self.ads_current = ads.ADS1115(self.i2c, gain=gain_current, data_rate=860, address=self.ads_current_address)
self.ads_voltage = ads.ADS1115(self.i2c, gain=gain_voltage, data_rate=860, address=self.ads_voltage_address)
# we measure the voltage on both A0 and A2 to guess the polarity
I = AnalogIn(self.ads_current, ads.P0).voltage * 1000. / 50 / self.r_shunt # noqa measure current
U0 = AnalogIn(self.ads_voltage, ads.P0).voltage * 1000. # noqa measure voltage
U2 = AnalogIn(self.ads_voltage, ads.P2).voltage * 1000. # noqa
# check polarity
polarity = 1 # by default, we guessed it right
vmn = U0
if U0 < 0: # we guessed it wrong, let's use a correction factor
polarity = -1
vmn = U2
elif strategy == 'vmax':
while I < 3 or abs(vmn) < 20 : #TODO: hardware related - place in config
if count==1:
self.DPS.write_register(0x09, 1) # DPS5005 on
time.sleep(best_tx_injtime) # inject for given tx time
self.DPS.write_register(0x0000, volt, 2)
self.ads_current = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=self.ads_current_address)
self.ads_voltage = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=self.ads_voltage_address)
# autogain
if autogain:
gain_current = self._gain_auto(AnalogIn(self.ads_current, ads.P0))
gain_voltage0 = self._gain_auto(AnalogIn(self.ads_voltage, ads.P0))
gain_voltage2 = self._gain_auto(AnalogIn(self.ads_voltage, ads.P2))
gain_voltage = np.min([gain_voltage0, gain_voltage2]) #TODO: separate gain for P0 and P2
self.ads_current = ads.ADS1115(self.i2c, gain=gain_current, data_rate=860, address=self.ads_current_address)
self.ads_voltage = ads.ADS1115(self.i2c, gain=gain_voltage, data_rate=860, address=self.ads_voltage_address)
# we measure the voltage on both A0 and A2 to guess the polarity
for i in range(10):
I = AnalogIn(self.ads_current, ads.P0).voltage * 1000. / 50 / self.r_shunt # noqa measure current
U0 = AnalogIn(self.ads_voltage, ads.P0).voltage * 1000. # noqa measure voltage
U2 = AnalogIn(self.ads_voltage, ads.P2).voltage * 1000. # noqa
time.sleep(best_tx_injtime)
# check polarity
polarity = 1 # by default, we guessed it right
vmn = U0
if U0 < 0: # we guessed it wrong, let's use a correction factor
polarity = -1
vmn = U2
n = 0
while (abs(vmn) > voltage_max or I > current_max) and volt>0: #If starting voltage is too high, need to lower it down
# print('we are out of range! so decreasing volt')
volt = volt - 2
self.DPS.write_register(0x0000, volt, 2)
#self.DPS.write_register(0x09, 1) # DPS5005 on
I = AnalogIn(self.ads_current, ads.P0).voltage * 1000. / 50 / self.r_shunt
U0 = AnalogIn(self.ads_voltage, ads.P0).voltage * 1000.
U2 = AnalogIn(self.ads_voltage, ads.P2).voltage * 1000.
polarity = 1 # by default, we guessed it right
vmn = U0
if U0 < 0: # we guessed it wrong, let's use a correction factor
polarity = -1
vmn = U2
n+=1
if n > 25 :
break
factor_I = (current_max) / I
factor_vmn = voltage_max / vmn
factor = factor_I
if factor_I > factor_vmn:
factor = factor_vmn
Arnaud WATLET
committed
#print('factor', factor_I, factor_vmn)
print(factor_I, factor_vmn, 'factor!!')
elif strategy == 'vmin':
# implement different strategy
I=20
vmn=400
count=0
while I > 10 or abs(vmn) > 300 : #TODO: hardware related - place in config
if count > 0 :
volt = volt - 2
count=count+1
if volt > 50:
break
# set voltage for test
if count==1:
self.DPS.write_register(0x09, 1) # DPS5005 on
time.sleep(best_tx_injtime) # inject for given tx time
self.ads_current = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=self.ads_current_address)
self.ads_voltage = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860, address=self.ads_voltage_address)
# autogain
if autogain:
gain_current = self._gain_auto(AnalogIn(self.ads_current, ads.P0))
gain_voltage0 = self._gain_auto(AnalogIn(self.ads_voltage, ads.P0))
gain_voltage2 = self._gain_auto(AnalogIn(self.ads_voltage, ads.P2))
gain_voltage = np.min([gain_voltage0, gain_voltage2]) #TODO: separate gain for P0 and P2
self.ads_current = ads.ADS1115(self.i2c, gain=gain_current, data_rate=860, address=self.ads_current_address)
self.ads_voltage = ads.ADS1115(self.i2c, gain=gain_voltage, data_rate=860, address=self.ads_voltage_address)
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
# we measure the voltage on both A0 and A2 to guess the polarity
I = AnalogIn(self.ads_current, ads.P0).voltage * 1000. / 50 / self.r_shunt # noqa measure current
U0 = AnalogIn(self.ads_voltage, ads.P0).voltage * 1000. # noqa measure voltage
U2 = AnalogIn(self.ads_voltage, ads.P2).voltage * 1000. # noqa
# check polarity
polarity = 1 # by default, we guessed it right
vmn = U0
if U0 < 0: # we guessed it wrong, let's use a correction factor
polarity = -1
vmn = U2
n=0
while (abs(vmn) < voltage_min or I < current_min) and volt > 0 : #If starting voltage is too high, need to lower it down
# print('we are out of range! so increasing volt')
volt = volt + 2
print(volt)
self.DPS.write_register(0x0000, volt, 2)
#self.DPS.write_register(0x09, 1) # DPS5005 on
#time.sleep(best_tx_injtime)
I = AnalogIn(self.ads_current, ads.P0).voltage * 1000. / 50 / self.r_shunt
U0 = AnalogIn(self.ads_voltage, ads.P0).voltage * 1000.
U2 = AnalogIn(self.ads_voltage, ads.P2).voltage * 1000.
polarity = 1 # by default, we guessed it right
vmn = U0
if U0 < 0: # we guessed it wrong, let's use a correction factor
polarity = -1
vmn = U2
n+=1
if n > 25 :
break
vab = volt
self.DPS.write_register(0x09, 0) # DPS5005 off
# print('polarity', polarity)
self.pin0.value = False
self.pin1.value = False
Rab = (volt * 1000.) / I # noqa
self.exec_logger.debug(f'Rab = {Rab:.2f} Ohms')
Olivier Kaufmann
committed
# self.DPS.write_register(0x09, 0) # DPS5005 off
self.pin0.value = False
self.pin1.value = False
return vab, polarity, Rab
"""Finds quadrupole where A and B are identical.
If A and B are connected to the same electrode, the Pi burns (short-circuit).
Olivier Kaufmann
committed
quads : numpy.ndarray
List of quadrupoles of shape nquad x 4 or 1D vector of shape nquad.
output : numpy.ndarray 1D array of int
List of index of rows where A and B are identical.
"""
# if we have a 1D array (so only 1 quadrupole), make it a 2D array
if len(quads.shape) == 1:
quads = quads[None, :]
output = np.where(quads[:, 0] == quads[:, 1])[0]
return output
Olivier Kaufmann
committed
def _gain_auto(self, channel):
"""Automatically sets the gain on a channel
Parameters
----------
channel : ads.ADS1x15
Instance of ADS where voltage is measured.
Returns
-------
gain : float
Gain to be applied on ADS1115.
"""
gain = 2 / 3
if (abs(channel.voltage) < 2.040) and (abs(channel.voltage) >= 1.0):
Olivier Kaufmann
committed
gain = 2
elif (abs(channel.voltage) < 1.0) and (abs(channel.voltage) >= 0.500):
Olivier Kaufmann
committed
gain = 4
elif (abs(channel.voltage) < 0.500) and (abs(channel.voltage) >= 0.250):
Olivier Kaufmann
committed
gain = 8
Olivier Kaufmann
committed
gain = 16
self.exec_logger.debug(f'Setting gain to {gain}')
return gain
def get_data(self, survey_names=None, cmd_id=None):
"""Get available data.
Parameters
----------
survey_names : list of str, optional
List of filenames already available from the html interface. So
their content won't be returned again. Only files not in the list
will be read.
cmd_id : str, optional
Unique command identifier
if survey_names is None:
survey_names = []
fnames = [fname for fname in os.listdir('data/') if fname[-4:] == '.csv']
ddic = {}
if cmd_id is None:
cmd_id = 'unknown'
for fname in fnames:
if ((fname != 'readme.txt')
and ('_rs' not in fname)
and (fname.replace('.csv', '') not in survey_names)):
try:
data = np.loadtxt('data/' + fname, delimiter=',',
skiprows=1, usecols=(1, 2, 3, 4, 8))
data = data[None, :] if len(data.shape) == 1 else data
ddic[fname.replace('.csv', '')] = {
'a': data[:, 0].astype(int).tolist(),
'b': data[:, 1].astype(int).tolist(),
'm': data[:, 2].astype(int).tolist(),
'n': data[:, 3].astype(int).tolist(),
'rho': data[:, 4].tolist(),
}
except Exception as e:
print(fname, ':', e)
rdic = {'cmd_id': cmd_id, 'data': ddic}
self.data_logger.info(json.dumps(rdic))
return ddic
Olivier Kaufmann
committed
def interrupt(self, cmd_id=None):
"""Interrupts the acquisition
Parameters
----------
cmd_id : str, optional
Unique command identifier
"""
Olivier Kaufmann
committed
self.status = 'stopping'
if self.thread is not None:
self.thread.join()
self.exec_logger.debug('Interrupted sequence acquisition...')
else:
self.exec_logger.debug('No sequence measurement thread to interrupt.')
self.exec_logger.debug(f'Status: {self.status}')
Olivier Kaufmann
committed
def load_sequence(self, filename: str, cmd_id=None):
Olivier Kaufmann
committed
"""Reads quadrupole sequence from file.
Parameters
----------
filename : str
Path of the .csv or .txt file with A, B, M and N electrodes.
Electrode index start at 1.
cmd_id : str, optional
Unique command identifier
Olivier Kaufmann
committed
sequence : numpy.array
Olivier Kaufmann
committed
self.exec_logger.debug(f'Loading sequence {filename}')
sequence = np.loadtxt(filename, delimiter=" ", dtype=np.uint32) # load quadrupole file
Olivier Kaufmann
committed
if sequence is not None:
Olivier Kaufmann
committed
self.exec_logger.debug(f'Sequence of {sequence.shape[0]:d} quadrupoles read.')
# locate lines where the electrode index exceeds the maximum number of electrodes
Olivier Kaufmann
committed
test_index_elec = np.array(np.where(sequence > self.max_elec))
test_same_elec = self._find_identical_in_line(sequence)
# if statement with exit cases (TODO rajouter un else if pour le deuxième cas du ticket #2)
if test_index_elec.size != 0:
for i in range(len(test_index_elec[0, :])):
Olivier Kaufmann
committed
self.exec_logger.error(f'An electrode index at line {str(test_index_elec[0, i] + 1)} '
f'exceeds the maximum number of electrodes')
Olivier Kaufmann
committed
sequence = None
elif len(test_same_elec) != 0:
for i in range(len(test_same_elec)):
Olivier Kaufmann
committed
self.exec_logger.error(f'An electrode index A == B detected at line {str(test_same_elec[i] + 1)}')
Olivier Kaufmann
committed
sequence = None
Olivier Kaufmann
committed
if sequence is not None:
Olivier Kaufmann
committed
self.exec_logger.info(f'Sequence {filename} of {sequence.shape[0]:d} quadrupoles loaded.')
else:
self.exec_logger.warning(f'Unable to load sequence {filename}')
Olivier Kaufmann
committed
self.sequence = sequence
def measure(self, **kwargs):
Olivier Kaufmann
committed
warnings.warn('This function is deprecated. Use run_multiple_sequences() instead.', DeprecationWarning)
Olivier Kaufmann
committed
def _process_commands(self, message: str):
Olivier Kaufmann
committed
"""Processes commands received from the controller(s)
Olivier Kaufmann
committed
message : str
message containing a command and arguments or keywords and arguments
Olivier Kaufmann
committed
status = False
cmd_id = '?'
try:
decoded_message = json.loads(message)
self.exec_logger.debug(f'Decoded message {decoded_message}')
cmd_id = decoded_message.pop('cmd_id', None)
cmd = decoded_message.pop('cmd', None)
# args = decoded_message.pop('args', None)
# if args is not None:
# if len(args) != 0:
# if args[0] != '[':
# args = f'["{args}"]'
# self.exec_logger.debug(f'args to decode: {args}')
# args = json.loads(args) if args != '[]' else None
# self.exec_logger.debug(f'Decoded args {args}')
# else:
# args = None
Olivier Kaufmann
committed
kwargs = decoded_message.pop('kwargs', None)
# if kwargs is not None:
# if len(kwargs) != 0:
# if kwargs[0] != '{':
# kwargs = '{"' + kwargs + '"}'
# self.exec_logger.debug(f'kwargs to decode: {kwargs}')
# kwargs = json.loads(kwargs) if kwargs != '' else None
# self.exec_logger.debug(f'Decoded kwargs {kwargs}')
# else:
# kwargs = None
self.exec_logger.debug(f"Calling method {cmd}({str(kwargs) if kwargs is not None else ''})")
# self.exec_logger.debug(f"Calling method {cmd}({str(args) + ', ' if args is not None else ''}"
# f"{str(kwargs) if kwargs is not None else ''})")
Olivier Kaufmann
committed
if cmd_id is None:
self.exec_logger.warning('You should use a unique identifier for cmd_id')
if cmd is not None:
try:
# if args is None:
# if kwargs is None:
# output = getattr(self, cmd)()
# else:
# output = getattr(self, cmd)(**kwargs)
# else:
if kwargs is None:
output = getattr(self, cmd)()
Olivier Kaufmann
committed
else:
output = getattr(self, cmd)(**kwargs)
Olivier Kaufmann
committed
status = True
except Exception as e:
self.exec_logger.error(
f"Unable to execute {cmd}({str(kwargs) if kwargs is not None else ''}): {e}")
Olivier Kaufmann
committed
status = False
except Exception as e:
self.exec_logger.warning(f'Unable to decode command {message}: {e}')
status = False
finally:
reply = {'cmd_id': cmd_id, 'status': status}
reply = json.dumps(reply)
self.exec_logger.debug(f'Execution report: {reply}')
Olivier Kaufmann
committed
def quit(self, cmd_id=None):
Parameters
----------
cmd_id : str, optional
Unique command identifier
"""
self.exec_logger.debug(f'Quitting ohmpi.py following command {cmd_id}')
Olivier Kaufmann
committed
exit()
Olivier Kaufmann
committed
def _read_hardware_config(self):
"""Reads hardware configuration from config.py
Olivier Kaufmann
committed
self.exec_logger.debug('Getting hardware config')
self.id = OHMPI_CONFIG['id'] # ID of the OhmPi
self.r_shunt = OHMPI_CONFIG['R_shunt'] # reference resistance value in ohm
self.Imax = OHMPI_CONFIG['Imax'] # maximum current
self.exec_logger.debug(f'The maximum current cannot be higher than {self.Imax} mA')
self.coef_p2 = OHMPI_CONFIG['coef_p2'] # slope for current conversion for ads.P2, measurement in V/V
self.nb_samples = OHMPI_CONFIG['nb_samples'] # number of samples measured for each stack
self.version = OHMPI_CONFIG['version'] # hardware version
self.max_elec = OHMPI_CONFIG['max_elec'] # maximum number of electrodes
self.board_addresses = OHMPI_CONFIG['board_addresses']
self.mcp_board_address = OHMPI_CONFIG['mcp_board_address']
Olivier Kaufmann
committed
self.exec_logger.debug(f'OHMPI_CONFIG = {str(OHMPI_CONFIG)}')
self.i2c_mux_address = OHMPI_CONFIG['i2c_mux_address']
Olivier Kaufmann
committed
def read_quad(self, **kwargs):
Olivier Kaufmann
committed
warnings.warn('This function is deprecated. Use load_sequence instead.', DeprecationWarning)
Olivier Kaufmann
committed
self.load_sequence(**kwargs)
def _read_voltage(self):
pass
def _read_battery_level(self):
return self.DPS.read_register(0x05, 2)
def remove_data(self, cmd_id=None):
"""Remove all data in the data folder
Parameters
----------
cmd_id : str, optional
Unique command identifier
self.exec_logger.debug(f'Removing all data following command {cmd_id}')
Olivier Kaufmann
committed
def restart(self, cmd_id=None):
"""Restarts the Raspberry Pi
Parameters
----------
cmd_id : str, optional
Unique command identifier
"""
if self.on_pi:
self.exec_logger.info(f'Restarting pi following command {cmd_id}...')
os.system('reboot')
else:
self.exec_logger.warning('Not on Raspberry Pi, skipping reboot...')
def run_measurement(self, quad=None, nb_stack=None, injection_duration=None,
autogain=True, strategy='constant', tx_volt=None, best_tx_injtime=0.1, duty_cycle=0.5,
Olivier Kaufmann
committed
"""Measures on a quadrupole and returns transfer resistance.
quad : iterable (list of int)
Quadrupole to measure, just for labelling. Only switch_mux_on/off
really create the route to the electrodes.
remi.clement@inrae.fr
committed
Number of stacks. A stacl is considered two half-cycles (one
positive, one negative).
injection_duration : int, optional
remi.clement@inrae.fr
committed
autogain : bool, optional
If True, will adapt the gain of the ADS1115 to maximize the
resolution of the reading.
(V3.0 only) If we search for best voltage (tx_volt == 0), we can choose
vmax strategy : find the highest voltage that stays in the range
For a constant value, just set the tx_volt.
(V3.0 only) If specified, voltage will be imposed. If 0, we will look
Olivier Kaufmann
committed
for the best voltage. If the best Tx cannot be found, no
measurement will be taken and values will be NaN.
best_tx_injtime : float, optional
(V3.0 only) Injection time in seconds used for finding the best voltage.
Arnaud WATLET
committed
duty_cycle : float, optional, default: 0.5
Ratio of time between injection duration and no injection duration during a half-cycle
It should be comprised between 0.5 (no injection duration same as injection duration) and 1 (no injection
duration equal to 0)
cmd_id : str, optional
Unique command identifier

Guillaume Blanchy
committed
self.exec_logger.debug('Starting measurement')
self.exec_logger.debug('Waiting for data')
if quad is None:
quad = [0, 0, 0, 0]
if self.on_pi:
if nb_stack is None:
nb_stack = self.settings['nb_stack']
if injection_duration is None:
injection_duration = self.settings['injection_duration']
if tx_volt is None :
tx_volt = self.settings['tx_volt']
# inner variable initialization
sum_vmn = 0
sum_ps = 0
# let's define the pin again as if we run through measure()
# as it's run in another thread, it doesn't consider these
# and this can lead to short circuit!
self.pin0 = self.mcp_board.get_pin(0)
self.pin1 = self.mcp_board.get_pin(1)
self.pin7 = self.mcp_board.get_pin(7) # IHM on mesaurement
self.pin7.direction = Direction.OUTPUT
self.pin7.value = False
self.pin2.direction = Direction.OUTPUT
self.pin2.value = True
self.pin3.direction = Direction.OUTPUT
self.pin3.value = True
self.pin5 = self.mcp_board.get_pin(5) # IHM on mesaurement
self.pin5.direction = Direction.OUTPUT
self.pin5.value = True
self.pin6 = self.mcp_board.get_pin(6) # IHM on mesaurement
self.pin6.direction = Direction.OUTPUT
self.pin6.value = False
self.pin7 = self.mcp_board.get_pin(7) # IHM on mesaurement
self.pin7.value = False
if self.idps:
if self.DPS.read_register(0x05, 2) < 11:
self.pin7.value = True # max current allowed (100 mA for relays) #voltage
# get best voltage to inject AND polarity
if self.idps:
self.DPS.write_register(0X001, 2000, 0) #max current allow 200 mA
tx_volt, polarity, Rab = self._compute_tx_volt(
best_tx_injtime=best_tx_injtime, strategy=strategy, tx_volt=tx_volt, autogain=autogain)
Olivier Kaufmann
committed
self.exec_logger.debug(f'Best vab found is {tx_volt:.3f}V')
# first reset the gain to 2/3 before trying to find best gain
Olivier Kaufmann
committed
self.ads_current = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860,
address=self.ads_current_address)
self.ads_current.mode= Mode.CONTINUOUS
Olivier Kaufmann
committed
self.ads_voltage = ads.ADS1115(self.i2c, gain=2 / 3, data_rate=860,
Olivier Kaufmann
committed
start_delay = None
end_delay = None
Olivier Kaufmann
committed
self.DPS.write_register(0x0000, tx_volt, 2) # set tx voltage in V
self.DPS.write_register(0x09, 1) # DPS5005 on
time.sleep(2) # do not chnage this value 1 second is the minimum
self.exec_logger.debug('No best voltage found, will not take measurement')
Olivier Kaufmann
committed
out_of_range = True
Olivier Kaufmann
committed
if not out_of_range: # we found a Vab in the range so we measure
gain = 2 / 3
self.ads_voltage = ads.ADS1115(self.i2c, gain=gain, data_rate=860,
address=self.ads_voltage_address)
self.ads_voltage.mode= Mode.CONTINUOUS
Arnaud WATLET
committed
gain_voltage = []
for n in [0, 1]: # make short cycle for gain computation
if n == 0:
self.pin0.value = True
self.pin1.value = False
if self.board_version == 'mb.2023.0.0':
self.pin6.value = True # IHM current injection led on
else:
self.pin0.value = False
self.pin1.value = True # current injection nr2
if self.board_version == 'mb.2023.0.0':
self.pin6.value = True # IHM current injection led on
Arnaud WATLET
committed
gain_current = self._gain_auto(AnalogIn(self.ads_current, ads.P0))
gain_voltage.append(self._gain_auto(AnalogIn(self.ads_voltage, ads.P0)))
gain_voltage.append(self._gain_auto(AnalogIn(self.ads_voltage, ads.P2)))
# if polarity > 0:
# if n == 0:
# gain_voltage.append(self._gain_auto(AnalogIn(self.ads_voltage, ads.P0)))
# else:
# gain_voltage.append(self._gain_auto(AnalogIn(self.ads_voltage, ads.P2)))
# else:
# if n == 0:
# gain_voltage.append(self._gain_auto(AnalogIn(self.ads_voltage, ads.P2)))
# else:
# gain_voltage.append(self._gain_auto(AnalogIn(self.ads_voltage, ads.P0)))
self.pin0.value = False
self.pin1.value = False
time.sleep(best_tx_injtime)
# if n == 0:
# gain_voltage.append(self._gain_auto(AnalogIn(self.ads_voltage, ads.P0)))
# else:
# gain_voltage.append(self._gain_auto(AnalogIn(self.ads_voltage, ads.P2)))
self.pin6.value = False # IHM current injection led off
Arnaud WATLET
committed
self.exec_logger.debug(f'Gain current: {gain_current:.3f}, gain voltage: {gain_voltage[0]:.3f}, '
self.ads_current = ads.ADS1115(self.i2c, gain=gain_current, data_rate=860,
address=self.ads_current_address)
self.ads_current.mode= Mode.CONTINUOUS
Arnaud WATLET
committed
# one stack = 2 half-cycles (one positive, one negative)
# sampling for each stack at the end of the injection
sampling_interval = 2 # ms # TODO: make this a config option
self.nb_samples = int(injection_duration * 1000 // sampling_interval) + 1 # TODO: check this strategy
# we sample every 10 ms (as using AnalogIn for both current
# and voltage takes about 7 ms). When we go over the injection
# duration, we break the loop and truncate the meas arrays
# only the last values in meas will be taken into account
start_time = time.time() # start counter
for n in range(0, nb_stack * 2): # for each half-cycles
# current injection
if (n % 2) == 0:
self.pin0.value = True
self.pin1.value = False
if autogain: # select gain computed on first half cycle
self.ads_voltage = ads.ADS1115(self.i2c, gain=np.min(gain_voltage), data_rate=860,
address=self.ads_voltage_address)
self.ads_voltage.mode= Mode.CONTINUOUS
else:
self.pin0.value = False
self.pin1.value = True # current injection nr2
if autogain: # select gain computed on first half cycle
self.ads_voltage = ads.ADS1115(self.i2c, gain=np.min(gain_voltage), data_rate=860,
self.ads_voltage.mode= Mode.CONTINUOUS
Olivier Kaufmann
committed
self.exec_logger.debug(f'Stack {n} {self.pin0.value} {self.pin1.value}')
Arnaud WATLET
committed
if self.board_version == 'mb.2023.0.0':
self.pin6.value = True # IHM current injection led on
# measurement of current i and voltage u during injection
meas = np.zeros((self.nb_samples, 5)) * np.nan
start_delay = time.time() # stating measurement time
dt = 0
Olivier Kaufmann
committed
k = 0
for k in range(0, self.nb_samples):
# reading current value on ADS channels
meas[k, 0] = (AnalogIn(self.ads_current, ads.P0).voltage * 1000) / (50 * self.r_shunt)
# if pinMN == 0:
# meas[k, 1] = AnalogIn(self.ads_voltage, ads.P0).voltage * 1000.
# meas[k, 3] = meas[k, 1]
# meas[k, 4] = AnalogIn(self.ads_voltage, ads.P2).voltage * 1000. * -1.0
# else:
# meas[k, 1] = AnalogIn(self.ads_voltage, ads.P2).voltage * 1000. * -1.0
# meas[k, 4] = meas[k, 1]
# meas[k, 3] = AnalogIn(self.ads_voltage, ads.P0).voltage * 1000.
u0 = AnalogIn(self.ads_voltage, ads.P0).voltage * 1000.
u2 = AnalogIn(self.ads_voltage, ads.P2).voltage * 1000.
u = np.max([u0, u2]) * (np.heaviside(u0 - u2, 1.) * 2 - 1.) - self.vmn_offset
meas[k, 1] = u
meas[k, 3] = u0
meas[k, 4] = u2 *-1.0
meas[k, 1] = -AnalogIn(self.ads_voltage, ads.P0, ads.P1).voltage * self.coef_p2 * 1000
Olivier Kaufmann
committed
# else:
Olivier Kaufmann
committed
# self.exec_logger.debug('Unknown board')
time.sleep(sampling_interval / 1000)
dt = time.time() - start_delay # real injection time (s)
meas[k, 2] = time.time() - start_time
Olivier Kaufmann
committed
if dt > (injection_duration - 0 * sampling_interval / 1000.):
# stop current injection
self.pin0.value = False
self.pin1.value = False
Arnaud WATLET
committed
if self.board_version == 'mb.2023.0.0':
self.pin6.value = False # IHM current injection led on
# truncate the meas array if we didn't fill the last samples #TODO: check why
# measurement of current i and voltage u during off time
measpp = np.zeros((int(meas.shape[0] * (1 / duty_cycle - 1)), 5)) * np.nan
time.sleep(sampling_interval / 1000)
start_delay_off = time.time() # stating measurement time
dt = 0
for k in range(0, measpp.shape[0]):
# reading current value on ADS channels
Olivier Kaufmann
committed
measpp[k, 0] = (AnalogIn(self.ads_current, ads.P0).voltage * 1000.) / (50 * self.r_shunt)
# if pinMN == 0:
# measpp[k, 1] = AnalogIn(self.ads_voltage, ads.P0).voltage * 1000.
# measpp[k, 3] = measpp[k, 1]
# measpp[k, 4] = AnalogIn(self.ads_voltage, ads.P2).voltage * 1000. * -1.0
# else:
# measpp[k, 3] = AnalogIn(self.ads_voltage, ads.P0).voltage * 1000.
# measpp[k, 1] = AnalogIn(self.ads_voltage, ads.P2).voltage * 1000. * -1.0
# measpp[k, 4] = measpp[k, 1]
u0 = AnalogIn(self.ads_voltage, ads.P0).voltage * 1000.
u2 = AnalogIn(self.ads_voltage, ads.P2).voltage * 1000.
u = np.max([u0, u2]) * (np.heaviside(u0 - u2, 1.) * 2 - 1.) - self.vmn_offset
measpp[k, 4] = u2 * -1.0
Olivier Kaufmann
committed
measpp[k, 1] = -AnalogIn(self.ads_voltage, ads.P0, ads.P1).voltage * self.coef_p2 * 1000.
else:
self.exec_logger.debug('unknown board')
time.sleep(sampling_interval / 1000)
dt = time.time() - start_delay_off # real injection time (s)
Olivier Kaufmann
committed
if dt > (injection_duration - 0 * sampling_interval / 1000.):
# truncate the meas array if we didn't fill the last samples
# we alternate on which ADS1115 pin we measure because of sign of voltage
# store data for full wave form
fulldata.append(meas)
fulldata.append(measpp)
# TODO get battery voltage and warn if battery is running low
# TODO send a message on SOH stating the battery level
# let's do some calculation (out of the stacking loop)
# i_stack = np.empty(2 * nb_stack, dtype=object)
# vmn_stack = np.empty(2 * nb_stack, dtype=object)
i_stack, vmn_stack = [], []
# select appropriate window length to average the readings
window = int(np.min([f.shape[0] for f in fulldata[::2]]) // 3)
for n, meas in enumerate(fulldata[::2]):
# take average from the samples per stack, then sum them all
# average for the last third of the stacked values
# is done outside the loop
i_stack.append(meas[-int(window):, 0])
vmn_stack.append(meas[-int(window):, 1])
Arnaud WATLET
committed
sum_i = sum_i + (np.mean(meas[-int(meas.shape[0] // 3):, 0]))
vmn1 = np.mean(meas[-int(meas.shape[0] // 3), 1])
if (n % 2) == 0:
sum_vmn = sum_vmn - vmn1
sum_ps = sum_ps + vmn1
else:
sum_vmn = sum_vmn + vmn1
sum_ps = sum_ps + vmn1
else:
sum_i = np.nan
sum_vmn = np.nan
sum_ps = np.nan
Olivier Kaufmann
committed
fulldata = None
remi.clement@inrae.fr
committed
if self.idps:
self.DPS.write_register(0x0000, 0, 2) # reset to 0 volt
Olivier Kaufmann
committed
self.DPS.write_register(0x09, 0) # DPS5005 off
# reshape full data to an array of good size
# we need an array of regular size to save in the csv
Olivier Kaufmann
committed
if not out_of_range:
fulldata = np.vstack(fulldata)
# we create a big enough array given nb_samples, number of
# half-cycles (1 stack = 2 half-cycles), and twice as we
a = np.zeros((nb_stack * self.nb_samples * 2 * 2, 5)) * np.nan
a[:fulldata.shape[0], :] = fulldata
fulldata = a
else:
np.array([[]])
vmn_stack_mean = np.mean(
[np.diff(np.mean(vmn_stack[i * 2:i * 2 + 2], axis=1)) / 2 for i in range(nb_stack)])
vmn_std = np.sqrt(np.std(vmn_stack[::2]) ** 2 + np.std(
vmn_stack[1::2]) ** 2) # np.sum([np.std(vmn_stack[::2]),np.std(vmn_stack[1::2])])
i_stack_mean = np.mean(i_stack)
i_std = np.mean(np.array([np.std(i_stack[::2]), np.std(i_stack[1::2])]))
r_stack_mean = vmn_stack_mean / i_stack_mean
r_stack_std = np.sqrt((vmn_std / vmn_stack_mean) ** 2 + (i_std / i_stack_mean) ** 2) * r_stack_mean
ps_stack_mean = np.mean(
np.array([np.mean(np.mean(vmn_stack[i * 2:i * 2 + 2], axis=1)) for i in range(nb_stack)]))
# create a dictionary and compute averaged values from all stacks
# if self.board_version == 'mb.2023.0.0':
d = {
"time": datetime.now().isoformat(),
"A": quad[0],
"B": quad[1],
"M": quad[2],
"N": quad[3],
"inj time [ms]": (end_delay - start_delay) * 1000. if not out_of_range else 0.,
"Vmn [mV]": sum_vmn / (2 * nb_stack),
"I [mA]": sum_i / (2 * nb_stack),
"R [ohm]": sum_vmn / sum_i,
"Ps [mV]": sum_ps / (2 * nb_stack),
"nbStack": nb_stack,
"CPU temp [degC]": CPUTemperature().temperature,
"Nb samples [-]": self.nb_samples,
"fulldata": fulldata,
"I_stack [mA]": i_stack_mean,
"I_std [mA]": i_std,
"I_per_stack [mA]": np.array([np.mean(i_stack[i * 2:i * 2 + 2]) for i in range(nb_stack)]),
"Vmn_stack [mV]": vmn_stack_mean,
"Vmn_std [mV]": vmn_std,
"Vmn_per_stack [mV]": np.array(
[np.diff(np.mean(vmn_stack[i * 2:i * 2 + 2], axis=1))[0] / 2 for i in range(nb_stack)]),
"R_stack [ohm]": r_stack_mean,
"R_std [ohm]": r_stack_std,
"R_per_stack [ohm]": np.mean(
[np.diff(np.mean(vmn_stack[i * 2:i * 2 + 2], axis=1)) / 2 for i in range(nb_stack)]) / np.array(
[np.mean(i_stack[i * 2:i * 2 + 2]) for i in range(nb_stack)]),
"PS_per_stack [mV]": np.array(
[np.mean(np.mean(vmn_stack[i * 2:i * 2 + 2], axis=1)) for i in range(nb_stack)]),
"PS_stack [mV]": ps_stack_mean,
"Rab [ohm]": Rab,
"Pab [W]": tx_volt * i_stack_mean/1000.,
"Gain_Vmn": gain,
"Tx_battery [V]":self._read_battery_level()
# print(np.array([(vmn_stack[i*2:i*2+2]) for i in range(nb_stack)]))
# elif self.board_version == '22.10':
# d = {
# "time": datetime.now().isoformat(),
# "A": quad[0],
# "B": quad[1],
# "M": quad[2],
# "N": quad[3],
# "inj time [ms]": (end_delay - start_delay) * 1000. if not out_of_range else 0.,
# "Vmn [mV]": sum_vmn / (2 * nb_stack),
# "I [mA]": sum_i / (2 * nb_stack),
# "R [ohm]": sum_vmn / sum_i,
# "Ps [mV]": sum_ps / (2 * nb_stack),
# "nbStack": nb_stack,
# "Tx [V]": tx_volt if not out_of_range else 0.,
# "CPU temp [degC]": CPUTemperature().temperature,
# "Nb samples [-]": self.nb_samples,
# "fulldata": fulldata,
# }
else: # for testing, generate random data
d = {'time': datetime.now().isoformat(), 'A': quad[0], 'B': quad[1], 'M': quad[2], 'N': quad[3],
'R [ohm]': np.abs(np.random.randn(1)).tolist()}
dd.update({'A': str(dd['A'])})
dd.update({'B': str(dd['B'])})
dd.update({'M': str(dd['M'])})
dd.update({'N': str(dd['N'])})
# round float to 2 decimal
for key in dd.keys():
if isinstance(dd[key], float):
dd[key] = np.round(dd[key], 3)
dd['cmd_id'] = str(cmd_id)
self.data_logger.info(dd)
self.pin5.value = False # IHM led on measurement off
if self.sequence is None:
def run_multiple_sequences(self, cmd_id=None, sequence_delay=None, nb_meas=None, **kwargs):
"""Runs multiple sequences in a separate thread for monitoring mode.
Can be stopped by 'OhmPi.interrupt()'.
Additional arguments are passed to run_measurement().
Parameters
----------
cmd_id : str, optional
Unique command identifier
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
sequence_delay : int, optional
Number of seconds at which the sequence must be started from each others.
nb_meas : int, optional
Number of time the sequence must be repeated.
kwargs : dict, optional
See help(k.run_measurement) for more info.
"""
# self.run = True
if sequence_delay is None:
sequence_delay = self.settings['sequence_delay']
sequence_delay = int(sequence_delay)
if nb_meas is None:
nb_meas = self.settings['nb_meas']
self.status = 'running'
self.exec_logger.debug(f'Status: {self.status}')
self.exec_logger.debug(f'Measuring sequence: {self.sequence}')
def func():
for g in range(0, nb_meas): # for time-lapse monitoring
if self.status == 'stopping':
self.exec_logger.warning('Data acquisition interrupted')
break
t0 = time.time()
self.run_sequence(**kwargs)
# sleeping time between sequence
dt = sequence_delay - (time.time() - t0)
if dt < 0:
dt = 0
if nb_meas > 1:
time.sleep(dt) # waiting for next measurement (time-lapse)
self.status = 'idle'
self.thread = threading.Thread(target=func)
self.thread.start()
def run_sequence(self, cmd_id=None, plot_realtime_fulldata=False, plot_ads=False, **kwargs):
Olivier Kaufmann
committed
"""Runs sequence synchronously (=blocking on main thread).
Additional arguments are passed to run_measurement().
Parameters
----------
cmd_id : str, optional
Unique command identifier
Olivier Kaufmann
committed
"""
self.status = 'running'
self.exec_logger.debug(f'Status: {self.status}')
self.exec_logger.debug(f'Measuring sequence: {self.sequence}')
t0 = time.time()
self.reset_mux()
Olivier Kaufmann
committed
# create filename with timestamp
filename = self.settings["export_path"].replace('.csv',
f'_{datetime.now().strftime("%Y%m%dT%H%M%S")}.csv')
self.exec_logger.debug(f'Saving to {filename}')
# make sure all multiplexer are off
Olivier Kaufmann
committed
# measure all quadrupole of the sequence
if self.sequence is None:
n = 1
else:
n = self.sequence.shape[0]
for i in range(0, n):
if self.sequence is None:
quad = np.array([0, 0, 0, 0])
else:
quad = self.sequence[i, :] # quadrupole
if self.status == 'stopping':
break
if i == 0:
# call the switch_mux function to switch to the right electrodes
# switch on DPS
self.mcp_board = MCP23008(self.i2c, address=self.mcp_board_address)
self.pin2 = self.mcp_board.get_pin(2) # dsp -
self.pin2.direction = Direction.OUTPUT
self.pin2.value = True
self.pin3 = self.mcp_board.get_pin(3) # dsp -
self.pin3.direction = Direction.OUTPUT
self.pin3.value = True
time.sleep (4)
Olivier Kaufmann
committed
#self.switch_dps('on')
time.sleep(.6)
Olivier Kaufmann
committed
self.switch_mux_on(quad)
# run a measurement
if self.on_pi:
acquired_data = self.run_measurement(quad, **kwargs)
else: # for testing, generate random data
sum_vmn = np.random.rand(1)[0] * 1000.
sum_i = np.random.rand(1)[0] * 100.
cmd_id = np.random.randint(1000)
Olivier Kaufmann
committed
acquired_data = {
"time": datetime.now().isoformat(),
"A": quad[0],
"B": quad[1],
"M": quad[2],
"N": quad[3],
"inj time [ms]": self.settings['injection_duration'] * 1000.,
"Vmn [mV]": sum_vmn,
"I [mA]": sum_i,
"R [ohm]": sum_vmn / sum_i,
"Ps [mV]": np.random.randn(1)[0] * 100.,
"nbStack": self.settings['nb_stack'],
"Tx [V]": np.random.randn(1)[0] * 5.,
"CPU temp [degC]": np.random.randn(1)[0] * 50.,
"Nb samples [-]": self.nb_samples,
Olivier Kaufmann
committed
}
self.data_logger.info(acquired_data)
Olivier Kaufmann
committed
# switch mux off
self.switch_mux_off(quad)
# add command_id in dataset
acquired_data.update({'cmd_id': cmd_id})
# log data to the data logger
Olivier Kaufmann
committed
# save data and print in a text file
self.append_and_save(filename, acquired_data)
self.exec_logger.debug(f'quadrupole {i + 1:d}/{n:d}')
if plot_realtime_fulldata:
realtime_plot_window = 10
plt.ion()
last_measurement = acquired_data["fulldata"][~np.isnan(acquired_data["fulldata"][:, 2])]
if i==0:
xlim = [last_measurement[:, 2][-1] - realtime_plot_window, last_measurement[:, 2][-1]]
fig, (ax1, ax2), lines = plot_fulldata(last_measurement, realtime=True, xlim=xlim, plot_ads=plot_ads)
acquired_dataset = last_measurement
else:
fig, (ax1, ax2), lines, acquired_dataset = \
update_realtime_fulldata_plot(last_measurement, acquired_dataset, lines,
(ax1, ax2), fig, x_window=realtime_plot_window,plot_ads=plot_ads)
Olivier Kaufmann
committed
self.status = 'idle'
return fig,(ax1,ax2), (line1,line2), filename, acquired_dataset
else:
return filename
Olivier Kaufmann
committed
def run_sequence_async(self, cmd_id=None, **kwargs):
"""Runs the sequence in a separate thread. Can be stopped by 'OhmPi.interrupt()'.
Additional arguments are passed to run_measurement().
Parameters
----------
cmd_id : str, optional
Unique command identifier
Olivier Kaufmann
committed
"""
def func():
self.run_sequence(**kwargs)
self.thread = threading.Thread(target=func)
self.thread.start()
self.status = 'idle'
def rs_check(self, tx_volt=12., cmd_id=None):
"""Checks contact resistances
Parameters
----------
tx_volt : float
Voltage of the injection
cmd_id : str, optional
Unique command identifier
"""
# we only check the electrodes which are in the sequence (not all might be connected)
quads = np.array([[1, 2, 1, 2]], dtype=np.uint32)
Olivier Kaufmann
committed
else:
elec = np.sort(np.unique(self.sequence.flatten())) # assumed order
quads = np.vstack([
elec[:-1],
elec[1:],
elec[:-1],
elec[1:],
]).T
if self.idps:
quads[:, 2:] = 0 # we don't open Vmn to prevent burning the MN part
# as it has a smaller range of accepted voltage
export_path_rs = self.settings['export_path'].replace('.csv', '') \
+ '_' + datetime.now().strftime('%Y%m%dT%H%M%S') + '_rs.csv'

Guillaume Blanchy
committed
Olivier Kaufmann
committed
# self.run = True
if self.on_pi:
# make sure all mux are off to start with
self.reset_mux()
# measure all quad of the RS sequence
for i in range(0, quads.shape[0]):
quad = quads[i, :] # quadrupole
self.switch_mux_on(quad) # put before raising the pins (otherwise conflict i2c)
d = self.run_measurement(quad=quad, nb_stack=1, injection_duration=0.2, tx_volt=tx_volt, autogain=False)
Olivier Kaufmann
committed
voltage = tx_volt * 1000. # imposed voltage on dps5005
else:
voltage = d['Vmn [mV]']
current = d['I [mA]']
# compute resistance measured (= contact resistance)
Olivier Kaufmann
committed
resist = abs(voltage / current) / 1000.
# print(str(quad) + '> I: {:>10.3f} mA, V: {:>10.3f} mV, R: {:>10.3f} kOhm'.format(
msg = f'Contact resistance {str(quad):s}: I: {current * 1000.:>10.3f} mA, ' \
f'V: {voltage :>10.3f} mV, ' \
f'R: {resist :>10.3f} kOhm'
self.exec_logger.debug(msg)
# if contact resistance = 0 -> we have a short circuit!!
Olivier Kaufmann
committed
msg = f'!!!SHORT CIRCUIT!!! {str(quad):s}: {resist:.3f} kOhm'
self.exec_logger.warning(msg)
Olivier Kaufmann
committed
# save data in a text file
self.append_and_save(export_path_rs, {
'A': quad[0],
'B': quad[1],
'RS [kOhm]': resist,
})
# close mux path and put pin back to GND
self.switch_mux_off(quad)
else:
pass
self.status = 'idle'
Olivier Kaufmann
committed
#
# # TODO if interrupted, we would need to restore the values
# # TODO or we offer the possibility in 'run_measurement' to have rs_check each time?
Olivier Kaufmann
committed
def set_sequence(self, sequence=None, cmd_id=None):
"""Sets the sequence to acquire
Parameters
----------
sequence : list, str
sequence of quadrupoles
cmd_id: str, optional
Unique command identifier
"""
self.sequence = np.array(sequence).astype(int)
# self.sequence = np.loadtxt(StringIO(sequence)).astype('uint32')
status = True
except Exception as e:
self.exec_logger.warning(f'Unable to set sequence: {e}')
status = False
def stop(self, **kwargs):
warnings.warn('This function is deprecated. Use interrupt instead.', DeprecationWarning)
self.interrupt(**kwargs)
def _switch_mux(self, electrode_nr, state, role):
"""Selects the right channel for the multiplexer cascade for a given electrode.
Olivier Kaufmann
committed
Parameters
----------
electrode_nr : int
Electrode index to be switched on or off.
state : str
Either 'on' or 'off'.
role : str
Either 'A', 'B', 'M' or 'N', so we can assign it to a MUX board.
"""
Olivier Kaufmann
committed
if not self.use_mux or not self.on_pi:
if not self.on_pi:
self.exec_logger.warning('Cannot reset mux while in simulation mode...')
Olivier Kaufmann
committed
self.exec_logger.warning('You cannot use the multiplexer because use_mux is set to False.'
' Set use_mux to True to use the multiplexer...')
Arnaud WATLET
committed
elif self.sequence is None and not self.use_mux:
Olivier Kaufmann
committed
self.exec_logger.warning('Unable to switch MUX without a sequence')
else:
# choose with MUX board
tca = adafruit_tca9548a.TCA9548A(self.i2c, self.board_addresses[role])
Olivier Kaufmann
committed
# find I2C address of the electrode and corresponding relay
# considering that one MCP23017 can cover 16 electrodes
i2c_address = 7 - (electrode_nr - 1) // 16 # quotient without rest of the division
relay_nr = (electrode_nr-1) - ((electrode_nr-1) // 16) * 16
Olivier Kaufmann
committed
if i2c_address is not None:
# select the MCP23017 of the selected MUX board
mcp2 = MCP23017(tca[i2c_address])
mcp2.get_pin(relay_nr).direction = digitalio.Direction.OUTPUT
Olivier Kaufmann
committed
if state == 'on':
Olivier Kaufmann
committed
else:
Olivier Kaufmann
committed
self.exec_logger.debug(f'Switching relay {relay_nr} '
f'({str(hex(self.board_addresses[role]))}) {state} for electrode {electrode_nr}')
else:
self.exec_logger.warning(f'Unable to address electrode nr {electrode_nr}')
Olivier Kaufmann
committed
def switch_dps(self,state='off'):
"""Switches DPS on or off.
Parameters
----------
state : str
'on', 'off'
"""
self.pin3.direction = Direction.OUTPUT
if state == 'on':
self.pin2.value = True
self.pin3.value = True
self.exec_logger.debug(f'Switching DPS on')
time.sleep(4)
elif state == 'off':
self.pin2.value = False
self.pin3.value = False
self.exec_logger.debug(f'Switching DPS off')
Olivier Kaufmann
committed
def switch_mux_on(self, quadrupole, cmd_id=None):
Olivier Kaufmann
committed
"""Switches on multiplexer relays for given quadrupole.
Olivier Kaufmann
committed
Olivier Kaufmann
committed
Parameters
----------
cmd_id : str, optional
Unique command identifier
Olivier Kaufmann
committed
quadrupole : list of 4 int
List of 4 integers representing the electrode numbers.
Olivier Kaufmann
committed
roles = ['A', 'B', 'M', 'N']
# another check to be sure A != B
if quadrupole[0] != quadrupole[1]:
for i in range(0, 4):
if quadrupole[i] > 0:
self._switch_mux(quadrupole[i], 'on', roles[i])
else:
self.exec_logger.error('Not switching MUX : A == B -> short circuit risk detected!')
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
def ohmpi_to_bert(self,fname,abmn_file,coord_file):
"""Export data to BERT format.
Parameters
----------
"""
abmn = np.loadtxt(abmn_file)
nbr_abmn = len(abmn)
data = np.loadtxt(fname, comments = '#', delimiter = ',',
converters = None, skiprows = 1, usecols = [1,2,3,4,6,7], unpack = False,
ndmin = 0, encoding = 'bytes', max_rows = None)
coord = np.loadtxt(coord_file)
with open(fname +'data.dat','w') as rho_data:
rho_data.write(str(len(coord)))
rho_data.write('\n')
rho_data.write('# x y z')
rho_data.write('\n')
np.savetxt(rho_data,coord,delimiter=' ',fmt='%1.3f')
rho_data.write(str(len(data)))
rho_data.write('\n')
rho_data.write('# a b m n u i ')
rho_data.write('\n')
np.savetxt(rho_data,data, fmt='%i %i %i %i %1.3f %1.3f')
Olivier Kaufmann
committed
def switch_mux_off(self, quadrupole, cmd_id=None):
Olivier Kaufmann
committed
"""Switches off multiplexer relays for given quadrupole.
cmd_id : str, optional
Unique command identifier
Olivier Kaufmann
committed
quadrupole : list of 4 int
List of 4 integers representing the electrode numbers.
Olivier Kaufmann
committed
roles = ['A', 'B', 'M', 'N']
for i in range(0, 4):
if quadrupole[i] > 0:
self._switch_mux(quadrupole[i], 'off', roles[i])
Olivier Kaufmann
committed
def test_led(self):
"""Interactive method to test the multiplexer."""
self.mcp_board = MCP23008(self.i2c, address=self.mcp_board_address)
self.pin4 = self.mcp_board.get_pin(4) # Ohmpi_run
self.pin4.direction = Direction.OUTPUT
self.pin5 = self.mcp_board.get_pin(5) # measurement_run
self.pin5.direction = Direction.OUTPUT
self.pin6 = self.mcp_board.get_pin(6) # stack_run
self.pin6.direction = Direction.OUTPUT
self.pin7 = self.mcp_board.get_pin(7) # battery_off
self.pin7.direction = Direction.OUTPUT
self.pin4.value = True
self.pin5.value = True
self.pin6.value = True
self.pin7.value = True
time.sleep(0.5)
self.pin4.value = False
self.pin5.value = False
self.pin6.value = False
self.pin7.value = False
time.sleep(0.5)

Guillaume Blanchy
committed
def test_mux(self, activation_time=1.0, address=0x70):
"""Interactive method to test the multiplexer.
Parameters
----------
activation_time : float, optional
Time in seconds during which the relays are activated.
address : hex, optional
Address of the multiplexer board to test (e.g. 0x70, 0x71, ...).
"""
self.use_mux = True
self.reset_mux()
# choose with MUX board
tca = adafruit_tca9548a.TCA9548A(self.i2c, address)
# ask use some details on how to proceed
a = input('If you want try 1 channel choose 1, if you want try all channels choose 2!')

Guillaume Blanchy
committed
if a == '1':
print('run channel by channel test')
electrode = int(input('Choose your electrode number (integer):'))

Guillaume Blanchy
committed
electrodes = [electrode]
elif a == '2':
electrodes = range(1, 65)
else:
print('Wrong choice !')
return
# run the test

Guillaume Blanchy
committed
for electrode_nr in electrodes:
# find I2C address of the electrode and corresponding relay
# considering that one MCP23017 can cover 16 electrodes
i2c_address = 7 - (electrode_nr - 1) // 16 # quotient without rest of the division
relay_nr = (electrode_nr-1) - ((electrode_nr-1) // 16) * 16

Guillaume Blanchy
committed
if i2c_address is not None:
# select the MCP23017 of the selected MUX board
mcp2 = MCP23017(tca[i2c_address])
mcp2.get_pin(relay_nr).direction = digitalio.Direction.OUTPUT

Guillaume Blanchy
committed
# activate relay for given time
mcp2.get_pin(relay_nr).value = True
print('electrode:', electrode_nr, ' activated...', end='', flush=True)
time.sleep(activation_time)
mcp2.get_pin(relay_nr).value = False
print(' deactivated')
time.sleep(activation_time)

Guillaume Blanchy
committed
print('Test finished.')
Olivier Kaufmann
committed
def reset_mux(self, cmd_id=None):
"""Switches off all multiplexer relays.
Parameters
----------
cmd_id : str, optional
Unique command identifier
"""
Olivier Kaufmann
committed
if self.on_pi and self.use_mux:
roles = ['A', 'B', 'M', 'N']
for i in range(0, 4):
for j in range(1, self.max_elec + 1):
self._switch_mux(j, 'off', roles[i])
self.exec_logger.debug('All MUX switched off.')
elif not self.on_pi:
self.exec_logger.warning('Cannot reset mux while in simulation mode...')
else:
self.exec_logger.warning('You cannot use the multiplexer because use_mux is set to False.'
' Set use_mux to True to use the multiplexer...')
Olivier Kaufmann
committed
def _update_acquisition_settings(self, config):
warnings.warn('This function is deprecated, use update_settings() instead.', DeprecationWarning)
def update_settings(self, settings: str, cmd_id=None):
Olivier Kaufmann
committed
"""Updates acquisition settings from a json file or dictionary.
Parameters can be:
- nb_electrodes (number of electrode used, if 4, no MUX needed)
- injection_duration (in seconds)
- nb_meas (total number of times the sequence will be run)
- sequence_delay (delay in second between each sequence run)
- nb_stack (number of stack for each quadrupole measurement)
- export_path (path where to export the data, timestamp will be added to filename)
Olivier Kaufmann
committed
Parameters
----------
Olivier Kaufmann
committed
Path to the .json settings file or dictionary of settings.
cmd_id : str, optional
Unique command identifier
Olivier Kaufmann
committed
"""
status = False
Olivier Kaufmann
committed
try:
if isinstance(settings, dict):
self.settings.update(settings)
Olivier Kaufmann
committed
else:
Olivier Kaufmann
committed
dic = json.load(json_file)
self.settings.update(dic)
self.exec_logger.debug('Acquisition parameters updated: ' + str(self.settings))
status = True
Olivier Kaufmann
committed
self.exec_logger.warning('Unable to update settings.')
status = False
Olivier Kaufmann
committed
else:
Olivier Kaufmann
committed
self.exec_logger.warning('Settings are missing...')
return status
Olivier Kaufmann
committed
# Properties
@property
def sequence(self):
"""Gets sequence"""
if self._sequence is not None:
assert isinstance(self._sequence, np.ndarray)
return self._sequence
Olivier Kaufmann
committed
Olivier Kaufmann
committed
@sequence.setter
def sequence(self, sequence):
"""Sets sequence"""
if sequence is not None:
assert isinstance(sequence, np.ndarray)
self.use_mux = True
else:
self.use_mux = False
self._sequence = sequence
Olivier Kaufmann
committed
print(colored(r' ________________________________' + '\n' +
r'| _ | | | || \/ || ___ \_ _|' + '\n' +
r'| | | | |_| || . . || |_/ / | |' + '\n' +
r'| | | | _ || |\/| || __/ | |' + '\n' +
r'\ \_/ / | | || | | || | _| |_' + '\n' +
r' \___/\_| |_/\_| |_/\_| \___/ ', 'red'))
print('Version:', VERSION)
Olivier Kaufmann
committed
platform, on_pi = get_platform()
Olivier Kaufmann
committed
print(colored(f'\u2611 Running on {platform} platform', 'green'))
Olivier Kaufmann
committed
# TODO: check model for compatible platforms (exclude Raspberry Pi versions that are not supported...)
# and emit a warning otherwise
if not arm64_imports:
print(colored(f'Warning: Required packages are missing.\n'
f'Please run ./env.sh at command prompt to update your virtual environment\n', 'yellow'))
Olivier Kaufmann
committed
print(colored(f'\u26A0 Not running on the Raspberry Pi platform.\nFor simulation purposes only...', 'yellow'))
Olivier Kaufmann
committed
print(f'local date and time : {current_time.strftime("%Y-%m-%d %H:%M:%S")}')
# for testing
if __name__ == "__main__":
ohmpi = OhmPi(settings=OHMPI_CONFIG['settings'])
Olivier Kaufmann
committed
if ohmpi.controller is not None:
ohmpi.controller.loop_forever()